

Southern Illinois University Carbondale **OpenSIUC**

Publications

Department of Plant Biology

12-25-2015

Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

Weilan Zhang Texas A&M University

Craig Musante The Connecticut Agricultural Experiment Station

Jason C. White The Connecticut Agricultural Experiment Station

Paul Schwab Texas A&M University

Qiang Wang Southern Illinois University Carbondale

See next page for additional authors

Follow this and additional works at: http://opensiuc.lib.siu.edu/pb_pubs ©2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Recommended Citation

Zhang, Weilan, Musante, Craig, White, Jason C., Schwab, Paul, Wang, Qiang, Ebbs, Stephen D. and Ma, Xingmao. "Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.." *Plant physiology and biochemistry* (Dec 2015). doi:10.1016/j.plaphy.2015.12.013.

This Article is brought to you for free and open access by the Department of Plant Biology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Authors

Weilan Zhang, Craig Musante, Jason C. White, Paul Schwab, Qiang Wang, Stephen D. Ebbs, and Xingmao Ma

1	Bioavailability of Cerium Oxide Nanoparticles to Ranhanus sativus L in Two Soils
2 3 4	Weilen Zhang ¹ Croig Musente ² Jason C. White ² Paul Schweb ³ Oiang Wang ⁴ Stephen
4	The second secon
5	D. Ebbs ³ , Xingmao Ma ^{1,*}
6	¹ Zachry Department of Civil Engineering, Texas A&M University, College Station, TX,
7	77843, USA
8	² Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station,
9	123 Huntington Street, New Haven, CT 06504, USA
10	³ Department of Soil and Crop Sciences, Texas A&M University, College Station, TX,
11	77843, USA
12	⁴ Department of Civil and Environmental Engineering, Southern Illinois University,
13	Carbondale, IL, 62901
14	⁵ Department of Plant Biology and Center for Ecology, Southern Illinois University,
15	Carbondale, IL, 62901
16	
17	*Corresponding author
18	Xingmao Ma
19	Zachry Department of Civil Engineering
20	Texas A&M University, 3136 TAMU
21	College Station, TX, USA, 77843
22	Ph: 979-862-1862
23	Fax: 979-862-1452
24	Email: <u>xma@civil.tamu.edu</u>

25 Abstract

26 Cerium oxide nanoparticles (CeO₂ NP) are a common component of many 27 commercial products. Due to the general concerns over the potential toxicity of 28 engineered nanoparticles (ENPs), the phytotoxicity and *in planta* accumulation of CeO₂ 29 NPs have been broadly investigated. However, most previous studies were conducted in 30 hydroponic systems and with grain crops. For a few studies performed with soil grown 31 plants, the impact of soil properties on the fate and transport of CeO_2 NPs was generally 32 ignored even though numerous previous studies indicate that soil properties play a critical 33 role in the fate and transport of environmental pollutants. The objectives of this study 34 were to evaluate the soil fractionation and bioavailability of CeO_2 NPs to *Raphanus* 35 sativus L (radish) in two soil types. Our results showed that the silty loam contained 36 slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, 37 but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO₂ NPs 38 concentration increased. CeO₂ NPs associated with silicate minerals or the residue 39 fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions ($r^2 = 0.98$ and 0.78 for 40 41 loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 ($r^2 = 0.97$ and 0.89 for loamy sand and silty 42 43 loam respectively). Overall, the results demonstrated that soil properties are important 44 factors governing the distribution of CeO₂NPs in soil and subsequent bioavailability to 45 plants.

46

47 **Keywords:** cerium oxide nanoparticles, radish, bioavailability, soil fractionation

48 Introduction

49 As the world's most abundant rare earth element, cerium is widely used in 50 industries both in free metal and oxide form (Naumov, 2008; Masui et al., 2002). Thanks 51 to the large specific surface area and rich redox chemistry, cerium oxide nanoparticles 52 (CeO₂ NPs) have been used as catalysts, electrolyte materials and fuel additives (Zhang et 53 al., 2002). The increasing popularity of CeO_2 NPs in industry has caused concern over 54 their potential toxicity in the environment. There have been many reports that indicate 55 potential toxicity of CeO₂ NPs to bacteria, fish, and mammalian cells (Pelletier et al., 56 2010; Rosenkranz et al., 2012). The potential risks of CeO_2 NPs to plants, a critical food 57 source for humans, have also been investigated. However, previous studies were mainly 58 focused on the uptake and accumulation of CeO₂ NPs by grain crops and aboveground 59 vegetables in hydroponic systems. For instance, López-Moreno et al. (López-Moreno et 60 al., 2010) showed that intact CeO₂ NPs were taken up by soybean roots in hydroponic 61 systems without subsequent biotransformation. Zhang et al. (Zhang et al., 2011) also 62 reported that cucumber (*Cucumis sativus* L.) root could take up CeO₂ NPs and transport 63 them to the shoots. However, later investigations suggested that $CeO_2 NPs$ may release Ce^{3+} on root surface and uptake of Ce^{3+} rather than CeO_2 NPs might be the primary 64 65 pathwyay for plant upktae of CeO₂ NPs (Rui et al., 2015; Ma et al., 2015; Schwabe et al., 2015). Although hydroponic studies provide valuable information on the potential 66 67 mechanisms of plant uptake and accumulation of CeO₂ NPs, increasing efforts are 68 dedicated to elucidating the fate and impact of CeO₂ NPs in soil to obtain a more realistic 69 understanding of the fate and impact of CeO₂ NPs.

For example, after tomato plants were irrigated with 0.1 to 10 mg/L of CeO₂ NPs

71	solutions, Wang et al. (Wang et al., 2012) reported that Ce was accumulated in tomato
72	(Solanum lycopersicum L.) roots and shoots, including the edible tissues, with the root
73	being the primary tissue of accumulation. Zhao et al. (Zhao et al., 2015) also reported low
74	translocation of CeO2 NPs from root to shoot in corn plants (Zea mays L.) and noticed
75	that 800 mg/kg CeO ₂ NPs did not affect plant photosynthesis throughout the exposure but
76	significantly reduced the corn yield. Another recent study demonstrated that CeO2 NPs
77	did not affect the growth of lettuce (Lactuca sativa L.) at low concentrations (50 mg/kg
78	and 100 mg/kg) in potting soil, but significantly inhibited biomass production and
79	disrupted plant stress responses at 1000 mg/kg (Gui et al., 2015). While these soil-based
80	studies provide significant new information on the fate and impact of $CeO_2 NPs$ in the
81	ecosystem, none of the previous studies has closely examined the impact of soil
82	properties on the toxicity and bioavailability of CeO ₂ NPs to terrestrial plants. Plant
83	uptake of metals in soil depends on both the soluble fraction of total metal and the
84	capability of soil to release the metals and both factors are considerably affected by the
85	soil properties (Backes et al., 1995). Previous research has shown that metal mobility in
86	soil is governed by many factors including the soil characteristics (e.g. soil texture, pH,
87	and organic matter content); the nature of the contaminants (e.g. the chemical forms of
88	pollutants and the binding state); and the environmental conditions (e.g. acidification,
89	redox processes, temperature, and water regime) (Sahuquillo et al., 2003).
90	In recent decades, several extraction methods have been developed to evaluate the
91	mobility of metals in soil. Sequential selective extraction is defined as the use of a series
92	of selective reagents to solubilize the solid material successively into specific fractions
93	(Gleyzes et al., 2002). A three-step sequential extraction procedure for soil and sediment

94	analysis known as the BCR (Bureau Commune de Reference of the European
95	Commission) method, proposed in 1993 (Ure et al., 1993) and later modified by Rauret et
96	al in 1999 (Rauret et al., 1999) is widely used for the determination of extractable trace
97	metals in soils and sediments. This three-step sequential extraction method separates the
98	metal of interest into four fractions: the exchangeable, water/acid soluble metal (F1); the
99	metal bound to Fe-Mn oxides (F2); the metal bound to organic matter (F3) and the metal
100	bound to silicate minerals in the residual fraction (F4) (Rao et al., 2010; Sahuquillo et al.,
101	2003; Li et al., 2010). According to the research of Li et al. (Li et al., 2010), F1
102	represents the most active, mobile and bioavailable phase of the metal. These authors
103	used the BCR method to study the bioavailability of Zn, Cu, Pb Cd, Hg, and As in topsoil
104	and found that soil physicochemical properties (e.g. pH, organic matter, and clay content)
105	affected metal fractionation in soil and their bioavailability to plants. Zhong et al. (Zhong
106	et al., 2011) suggested that the first three fractions of the metals in soil were the
107	potentially bioavailable and hazardous fractions to plants. The successful application of
108	the BCR method to estimate the bioavailability of heavy metals in soil to plants provides
109	a potentially useful method to evaluate the availability of engineered metallic
110	nanoparticles under similar exposure scenarios.
111	Radish (Raphanus sativus L.) is a popular vegetable with high global
112	consumption and can mature in three to four weeks under favorable growth conditions.
113	Radish is also an underground vegetable, with its edible tissues directly exposed to CeO_2
114	NPs in soil. Therefore, radish may accumulate high concentrations of ENPs in their
115	edible tissues. A previous study indeed demonstrated that the radish tubes grown in a
116	loamy sand soil with 250 and 500 mg/kg of CeO2 NPs accumulated high concentrations

117	of Ce, posing potential risks for human exposure (Corral-Diaz et al., 2014). However,
118	detailed distribution of Ce in the tubes and the role of soil properties were not reported in
119	that study. The objectives of this investigation were to (1) use the BCR sequential
120	extraction method to evaluate the fractionation of CeO ₂ NPs in two types of soil, (2)
121	assess the bioavailability of CeO_2 NPs to radish roots and (3) determine the impact of soil
122	type on the root to shoot translocation of CeO ₂ NPs and their distribution in plant tissues.
123	
124	Materials and Methods
125	Chemicals
126	A dispersion of bare CeO ₂ NPs (10 wt. % in H ₂ O, <25 nm particle size) was
127	purchased from Sigma-Aldrich (St. Louis, MO). The shape, size and size distribution
128	were determined by a Tecnai G2 F20 transmission electron microscope (TEM) (FEI,
129	Hillsboro, Oregon) and are shown in Figure 1. Most of the nanoparticles had quadrilateral
130	or polygonal shapes and fell in the size range of 10-25 nm in diameter with an average
131	nanoparticle size of 19.1 nm. The size distribution was obtained by measuring 112
132	individual nanoparticles on the TEM image with ImageJ. The hydrodynamic diameter
133	and zeta potential of CeO ₂ NPs at 500 mg/L in water were 107.3 nm and 45 \pm 0.41 mV
134	respectively, as measured by a dynamic light scattering instrument (Malvern Zetasizer
135	Nano-ZS90, Westborough, MA). The surface speciation of CeO ₂ NPs was investigated
136	with an X-ray photoelectron spectroscopy (XPS) (Omicron multiprobe MXPS system,
137	Scienta Omicron, Germany). The XPS spectra of the surface of CeO ₂ NPs was shown in
138	Figure 1c. The results indicated that 12.4% of Ce on the surface was in the form of Ce^{3+} ,
139	as calculated through the XPS peak fitting software XPSPEAK 4.1.

140	Quarter and half strength Hoagland solution were prepared by dissolving an
141	appropriate amount of the modified Hoagland's basal salt mixture purchased from
142	Phytotechnology Laboratories (Lenexa, KS) in deionized (DI) water.
143	Soil characterization
144	Two types of soil were used in this study: (1) commercially-purchased topsoil
145	(Timberline Top Soil, Oldcastle Inc., Atlanta, GA); (2) an agricultural soil collected from
146	a farmland associated with Southern Illinois University (Carbondale, IL). Due to the
147	different weight percentages of sand, silt and clay in these two soils, the topsoil was
148	classified as loamy sand and the local soil was classified as silty loam according to the
149	USDA soil texture classification. The weight percentages of sand, silt, and clay were
150	determined through wet sieve analysis and hydrometer test (Bouyoucos, 1962). The
151	results for both soils are shown in Supplementary Table 1.
152	The Deutsches Institut für Normung (DIN) 19684-1 method was adopted for the
153	measurement of soil pH. One hundred mL deionized water was mixed with 40 g of air-
154	dried soil at the speed of 250 rpm (solid-liquid mass ratio 1:2.5). The mixture was shaken
155	for five minutes and allowed to settle for two hr. The pH was then measured with a pH
156	meter (Thermo Scientific Orion ROSS Ultra pH/ATC Triode, Orion Star A325). The pH
157	of loamy sand was 6.87 and the pH of silty loam was 6.58.
158	The ASTM D 2974 method (Standard Test Methods for Moisture, Ash, and
159	Organic Matter of Peat and Organic Soils) was used to determine the content of organic
160	matter in soil. The soil was first dried in an oven at 105 °C for 24 h. The dry soil was
161	weighed and then combusted at 440 °C for 24 h. The loss in mass was assumed to be due
162	entirely to oxidation of organic matter. Three replicates were prepared for each type of

163	soil. The average organic matter contents were 11.87% \pm 0.56% for loamy sand and
164	$2.21\% \pm 0.04\%$ (average ± standard error, n=3) for silty loam.

165 **Experimental Setup**

166 Soil preparation

167 The growing pots were established by adding 150 g of dry soil to a plastic
168 container (~266 mL total volume). CeO₂ NPs dispersion and deionized water were added
169 to the container in different proportions so that the soil was saturated to 100% of field
170 capacity and at the same time reached the targeted concentration of CeO₂ NPs

171 homogeneously. Four concentrations of CeO₂ NPs were prepared for each type of soil:

172 control (no treatment), 100, 500 and 1000 mg Ce /kg dry soil. The concentrations were

173 chosen based on the most frequently used concentrations in the literature for the fate and

174 phytotoxicity study of metal oxide nanoparticles to terrestrial plants (Holden et al., 2014).

175 Each treatment had six replicates. Altogether, 24 such containers were prepared for each

soil. The soil were incubated for one day before radish seeds were sowed.

177 Seed germination and growth conditions

178 Radish seeds [Cherriette (F1)] were purchased from Johnny's Selected Seeds

179 (Winslow, ME). Three seeds were placed approximately 15 mm beneath the soil surface

180 in each container with soils containing different concentrations of CeO₂ NPs. After

181 germination, each container was thinned to one seedling.

182 Plants were irrigated with quarter strength Hoagland's solution to a constant mass
183 (230 g after irrigation) daily from Day 6 to Day 15 after sowing. The soil was then

- 184 irrigated to the same constant mass with half strength Hoagland's solution until harvest
- 185 (Day 31). Plants were incubated on a growth cart with a 16 h photoperiod at 28 °C and

ambient humidity. The growth cart was equipped with four T5 fluorescent bulbs,

187 providing a light intensity of approximately 104 umol $m^{-2} s^{-1}$ at the height of plant shoots.

188 Relative chlorophyll content was measured with a SPAD 502 Plus Chlorophyll Meter at

189 Day 26 and was expressed as a percentage of the control plants.

190 Cerium fractionation in soil

191 At harvest, plants were gently removed from the soil for further analysis (details 192 described below). The soil was homogenized and then three samples were randomly 193 collected from three containers in each treatment and extracted with the modified BCR 194 method to determine the fractionation of CeO₂ NPs in soil. The sample was first 195 extracted with 20 mL of 0.11 M acetic acid solution by shaking at 250 rpm for 16 hours 196 at 22±5 °C and centrifuged at 3,000 g for 20 minutes to obtain the exchangeable fraction 197 (F1). The residue was then resuspended and extracted by 20 mL of 0.5 M hydroxylamine 198 hydrochloride solution at pH 1.5 and shaken at 250 rpm for 16 hours at 22±5 °C. The 199 mixture was centrifuged similarly as described above to obtain the reducible fraction 200 (F2). The residue was then resuspended and mixed with 30% H₂O₂ and shaken at 250 201 rpm for 1 hour at room temperature, followed by another hour of shaking at 250 rpm at 202 85 ± 2 °C with a closed cap. The volume of the mixture was reduced to less than 1.5 mL 203 by further heating at the same temperature without cap. Following the volume reduction, 204 an aliquot of 5 mL of 30% w/v H_2O_2 was added and the heating process was repeated 205 until the volume was reduced to about 0.5 mL. Afterwards, 25 mL of 1 M ammonium 206 acetate solution at pH 2 was mixed with the residue for 16 hours at 22 ± 5 °C and the 207 mixture was centrifuged at 3,000 g for 20 minutes to extract the oxidizable fraction (F3). 208 The residue fraction (F4) was extracted by agua regia following the ISO 11466 protocol;

209 4.5 mL of HCl (12.0 M) and 1.5 mL of HNO₃ (15.8 M) was added drop-wise to 0.5 g of 210 residue from the third fraction. The mixture was left at room temperature for 16 hours 211 and then was transferred to a 50 mL reaction vessel connected to a reflux condenser. The 212 reaction vessel was heated until reflux conditions were reached and was continuously 213 heated for 2 hours (the condensation zone is lower than 1/3 of the height of the 214 condenser). The condenser was further rinsed with 10 mL HNO_3 (0.5 M) and the rinsing 215 solution and additional HNO_3 (0.5 M) were collected and added to the reaction vessel 216 until they reached the 50 mL scale line. The supernatant solution of each fraction was 217 analyzed for Ce by an Agilent 7500ce Inductively Coupled Plasma Mass Spectrometry 218 (ICP-MS, Santa Clara, CA).

219 Scanning electron microscope characterization of cerium in soil

220 To determine the physicochemical characteristics of CeO₂ NPs in soil, air dried 221 control and 1000 mg/kg treated loamy sand and silty loam soils were fixed on a double-222 sided adhesive tape, which was adhered to the specimen holder, and were analyzed using 223 FEI Quanta FEG450 scanning electron microscope (SEM) equipped with an Energy 224 Dispersive X-ray Spectroscopy (EDS). The SEM imaging of soil samples was performed 225 by applying accelerating voltages of 10 kV. The concentration of 1000 mg/kg CeO₂ NPs, 226 the highest concentration used in this study, was selected to ensure the detectability of 227 CeO₂ NPs by SEM.

228 Plant uptake and accumulation of cerium

After plants were carefully removed from the soil, they were separated into shoots, storage root (the edible radish bulb) and fine roots. The separated tissues were rinsed with DI water to remove all adhering soil particles and dried in an oven at 105 °C

232 for 30 minutes, then at 75 °C for seven days prior to dry weight determination. After 233 drying in the oven, three replicates in each treatment were randomly chosen. The dried 234 shoot, storage root, and fine root tissues were ground into fine powders and digested in 4 235 mL of 70% (v/v) nitric acid. The nitric acid digest was heated at 95 °C for 20 minutes and 236 then at 45 °C for 4 minutes. The cycle was repeated until all the dry tissues was 237 dissolved. Afterwards, 2 mL of H₂O₂ was added to the mixture. The mixture was heated 238 using the same temperature cycle until the solution was clear. The digest solutions of 239 storage roots and shoots were then analyzed by ICP-MS. The digest solution of fine roots 240 was analyzed by a Thermal Scientific iCAP 6500 Inductively Coupled Plasma Optical 241 Emission Spectrometry (ICP-OES) due to the high cerium concentration in the fine root 242 tissue.

243 Distribution of cerium in radish shoots and storage roots

244 Three replicates from the control and 500 mg/kg treatment group grown in both 245 soils were used as representatives to illustrate the cerium localization in the radish storage 246 roots and shoots. The whole storage root was divided into three layers with a precision 247 knife: the periderm (Peri), the intermediate layer (L1), and the inner layer (L2). The 248 thicknesses of the periderm and the intermediate layer were approximately 1 mm and 5 249 mm respectively (Figure 2). Each shoot was divided into two sections: the edges (S1) and 250 the main leaf area (S2). The width of the edges was about 5-7 mm (Figure 2). The 251 subsections of the storage roots and shoots were oven dried and digested as described 252 above for the whole tissues. The digest solutions were analyzed by ICP-MS. 253 **Data analysis**

254

The statistical analysis of experimental data was performed by means of one-way

255 and two-way ANOVA using IBM SPSS Statistics 20.0. The Duncan test was conducted 256 for post hoc comparisons. A student t test was conducted to determine the significance of 257 soil impact at the same concentration. Statistical significance was accepted when p<0.05. 258 Results 259 **Plant physiological status** 260 The dry biomass of storage roots and shoots are shown in Supplementary Figure 261 1. For both soils, treatment with 100 and 500 mg/kg CeO₂ NPs did not cause any 262 significant differences between the treated plants and their controls. Exposure to 1000 mg 263 /kg CeO₂ NPs resulted in significantly greater dry biomass of the storage root than all 264 other treated and control plants in loamy sand. The same treatment, however, led to

significantly lower dry biomass of storage roots than that of 500 mg/kg treated radishes insilty loam. When the biomass of radishes grown in two soils at the same concentration

267 was compared, the storage roots of control, 100 mg/kg, and 500 mg/kg CeO_2 NPs treated

radishes were significantly greater in silty loam than in loamy sand. At the highest

concentration, the difference of the storage root biomass between the two soils was not

significant.

In contrast to the storage root biomass, the shoot biomass was not affected by CeO₂ NPs exposure for either soil. However, significant differences were noticed between the soil types at control and 100 mg/kg treatment. Radishes grown in silty loam soil from the two concentration groups had significantly higher shoot biomass than the plants grown in loamy sand. The relative chlorophyll contents, expressed as percentages of controls, are shown in Supplementary Table 2. No significant differences were observed across the treatments.

278 Cerium fractionation in soil

279 The percentage of each fraction in the two soils is illustrated in stacked columns 280 in Figure 3. F4 was the dominant fraction of CeO_2 NPs in both soils, and the percentage 281 was invariably higher in silty loam (60.8-78.2%) than in loamy sand (58.6-70.5%) at the 282 same concentration. F1 was the smallest fraction and accounted for less than 0.11% in 283 loamy sand and 0.22% in silty loam. While the relative percentage of F2 was comparable 284 between the two soils, the loamy sand always contained higher oxidizable fraction (F3) 285 than silty loam at the same concentration (15.8-17.8% for loamy sand vs. 9.07-11.8% for 286 silty loam). The distribution of CeO₂ NPs among these four fractions changed with 287 concentration. In general, with the increase of concentration, the percentage of F1 and F2 288 decreased while the percentage of F4 increased in both soils. The percentage of F3 was 289 relatively stable across the concentration ranges employed in this study. 290 The actual concentrations of each individual fraction are presented in 291 Supplementary Figure 2. As the most abundant rare earth element on the earth's crust, 292 both soils contained high background concentration of cerium. The total background 293 cerium was 52.5 + 1.87 mg/kg dry soil in the loamy sand and 77.2 + 5.25 mg/kg dry soil 294 in the silty loam. Due to the high background concentrations of cerium, the fractionation 295 of dosed CeO₂ was calculated by subtracting the cerium concentration in each individual 296 fraction of the control soil from the concentrations in the corresponding fractions of the 297 treated soil. The results are presented in Figure 4. Both the dosing concentration and soil 298 characteristics were significant factors affecting the fractionation of CeO₂ NPs in soil 299 according to the two-way ANOVA analysis. In general, the silty loam contained higher 300 F1 than the loamy sand and the difference was significant for 500 mg/kg treatment

301 (Figure 4a). The silty loam contained significantly lower F2 and F3 than the loamy sand
302 in 500 and 1000 mg/kg treatment. The silty loam had significantly higher F4 than the
303 loamy sand in 100 mg/kg but the differences in F4 were not significant in higher
304 concentrations (Figure 4d). It has been reported that CeO₂ NPs cannot be fully dissolved
305 in aqua regia (Antisari et al., 2011). Therefore, it is likely that some cerium residues
306 remained in the soil and was not included in the four fractions reported here.

307 To further probe the differences of CeO₂ NPs behaviors in the two soils, SEM 308 analysis was conducted. The SEM images shown in Figure 5 were acquired with samples 309 from control and 1000 mg/kg treatment. EDS analysis was conducted in the selected area 310 (red frames in the images) to detect the component elements. The main components of 311 the two soils were silica and oxygen. In control samples from both soil types, no cerium 312 was detected by the EDS even though ICP-MS analysis showed that both soils contained 313 high background cerium. However, in 1000 mg/kg treatment, the cerium weight 314 percentages were 7.23% and 8.05% in loamy sand and silty loam, respectively. The 315 cerium signals in both soil indicate that the CeO_2 NPs were mainly attached to the edge 316 of soil particles. Individual particle aggregates could be seen in the treated loamy sand, 317 but not in the silty loam soil.

318 Cerium uptake and accumulation

Cerium was detected in all plant tissues even though the total accumulation of cerium in plant biomass was relatively small compared with the total cerium added to the system. The concentrations and the total mass of cerium in different plant tissues are presented in Supplementary Figure 3. Due to the high background cerium concentration in control plants, the accumulation of the dosed cerium in different plant tissues was

324 calculated by subtracting the cerium concentration in different plant tissues of the control
325 plants from the corresponding tissues of treated ones and the results are presented in
326 Figure 6. Even though the accumulation of cerium in all tissues increased with
327 increasing concentration in general, a dose response relationship was not apparent,
328 especially for the shoot tissues.

The comparison of cerium accumulation by plants grown in two soil types indicated that the radish fine roots and storage root from the loamy sand usually possessed higher cerium concentration than the same tissues collected from the silty loam. Interestingly, the cerium concentration in the shoot showed opposite trend between these two soils. However, none of these differences were significant except for the cerium in the fine roots from 100 mg/kg treatment.

335 Cerium localization in radish storage roots and shoots

336 The cerium concentrations in different sections of radish storage roots and shoots 337 are shown in Table 1. The average cerium concentration in the periderm (Peri) of radish 338 storage roots from 500 mg/kg was more than ten times higher than that of control in both 339 soils. However, large variations were observed between replicates from the same 340 treatment group. Cerium concentrations in the intermediate layer (L1) and the inner layer 341 were comparable to the control plants in both soils. In radish leaves, the cerium 342 concentrations in the edge section (S1) of treated and control plants were similar for both 343 soils. However, the average cerium concentration in the main leaf area (S2) was 344 significantly higher (almost three times) from 500 mg/kg treated radish than from control 345 plants in the silty loam. No difference was observed for the main leaf area in control 346 plants and 500 mg/kg treated plants in loamy sand.

348 Discussion

349	Although plant uptake of CeO ₂ NPs from soil has been observed previously (Rico
350	et al., 2013; López-Moreno et al., 2010; Wang et al., 2012; Wang et al., 2013; Zhang et
351	al., 2011), the influence of soil properties on CeO ₂ NPs bioavailability has not been
352	examined. However, once cerium enters soil through wastewater irrigation or biosolid
353	amendment, particle bioavailability may depend heavily on the physical and chemical
354	properties of soil, as noted for other elements (Ernst, 1996). The results of this study
355	confirmed that the accumulation and translocation of CeO ₂ NPs in plant tissues depend
356	heavily on soil type due to the impact of soil on CeO ₂ NPs fractionation.
357	Even though CeO ₂ NPs are generally perceived as stable in the environment,
358	dissolution does occur and Cornelis et al. (Cornelis et al., 2011) reported that about
359	0.25% of total CeO ₂ NPs in soil was released as ions at pH 7 and 9 in soil. The presence
360	of chelating agents in the soil may further enhance the dissolution by forming complexes
361	with Ce^{3+} on the surface of CeO_2 NPs (Schwabe et al., 2014). F1 was considered to
362	include both the dissolved ions and dissolved nanoparticles. Due to the low solubility of
363	CeO ₂ NPs and possibly the rapid adsorption of dissolved ions to the solid phase, F1
364	represented a negligible fraction in both soils in this study even though the concentration
365	of F1 increased with concentrations (<0.16% for the dosed CeO ₂ NPs). Water soluble
366	cerium at low concentration is generally not considered as toxic and is sometimes used as
367	fertilizer (Hu et al., 2002). The F1 in silty loam was invariably higher than that in loamy
368	sand at the same concentration. Therefore, the differences of F1 may partially explain the
369	generally higher dry biomass of radish storage roots and shoots in silty loam than in

370 loamy sand (Supplementary Figure 1).

371	Fe-Mn oxides, considered as secondary minerals, exist primarily in the clay
372	(Allen and Hajek, 1989; Fieldes and Swindale, 1954; Post, 1999). Therefore, the higher
373	reducible CeO ₂ (F2) in silty loam with higher clay content may be expected.
374	Interestingly, the expectation was only consistent with the observations at lower
375	concentrations (<100 mg/kg). At higher concentrations (500 and 1000 mg/kg), the
376	opposite trend was observed. Two processes may have contributed to the seemingly
377	inconsistent observations of CeO_2 NPs fractionation in these two soils. Firstly, the CeO_2
378	NPs used in this study were positively charged, as indicated by their surface zeta
379	potential. At neutral pH, the surface charges of quartz and feldspars, which are the main
380	components of sand and silt, are negative (Jada et al., 2006; Yin and Drelich, 2008).
381	Previous research showed that electrons can accumulate at the edges of clay particles
382	(Bolland et al., 1976). Therefore, CeO ₂ NPs can be electrostatically attracted to the
383	electrons on clay edges and precipitate (Cornelis et al., 2011). The strong affinity
384	between CeO ₂ NPs and some soil particles is supported by the SEM images (Figure 5).
385	The electrostatic forces present may therefore restrain the direct contact of CeO ₂ NPs
386	with Fe-Mn oxides in the clay. Secondly, the extractant (hydroxylamine hydrochloride)
387	used to recover F2 may lead to higher cerium concentration in loamy sand due to its high
388	reducing capacity. It has been reported that hydroxylamine hydrochloride can reduce
389	Ce^{4+} in CeO_2 to Ce^{3+} ions $(2CeO_2 + NH_2OH + NH_3OH^+ + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^+ + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^+ + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + NH_3OH^- + 2H_2O \rightarrow 2Ce(OH)_3 + NO_2^- + NH_2OH^- + NH_3OH^- + NH_3OH^$
390	$NH_4^+ + H^+$. $E^o = 0.232V$) (Tamilmani et al., 2003). The reaction might be stronger
391	between the extractant and the more mobile CeO ₂ NPs in the loamy sand, leading to high
392	measurement of F2 in the loamy sand than in silty loam. This hypothesis needs further

393 evaluation. Different hydrodynamic sizes of CeO₂ NPs at different concentrations might 394 also affect their precipitation and association with different fractions of soil particles. 395 Future studies should aim to characterize ENPs in the actual environment in addition to 396 the characterization of primary particles. 397 The oxidizable fraction (F3) of CeO_2 is believed to be associated with organic 398 matter in soil. The higher organic matter content in loamy sand soil is consistent with the 399 generally higher F3 in this soil than in the silty loam. Natural organic matter can enhance 400 the mobility of NPs in porous media by increasing charge and steric stabilization (Lin et 401 al., 2010). Zhao et al. (Zhao et al., 2012) studied the uptake of CeO₂ NPs by corn grown 402 in soils and concluded that organic matter improved the mobility and bioavailability of 403 CeO_2 NPs to corn, resulting in higher accumulation of Ce in corn roots. The consistently 404 higher cerium concentration in the fine roots and storage roots of radish grown in loamy 405 sand was consistent with the relative organic matter contents in these two soils. These 406 findings support the theory that natural organic matter plays an important role in 407 regulating the mobility and bioavailability of engineered nanoparticles to plants (Antisari 408 et al., 2011).

One intriguing observation of this study was the disparity of roots and shoots with regard to CeO₂ NPs accumulation from different soils. As described above, the radish storage roots and fine roots generally contained higher cerium concentration in loamy sand. However, the concentrations of cerium in shoot tissues followed the opposite trend between the soils. It is postulated that the low translocation of cerium in the loamy sand is associated with the low F1 in that soil. Previous research suggested that engineered nanoparticles in plant roots are translocated up through the xylem tissues along with

416 water (Allen and Hajek, 1989), which makes the water soluble fraction more readily 417 transferred to the shoot tissues. A recent study also demonstrated that negatively charged 418 humus colloids in soil could chelate with positively charged CeO₂ NPs and reduce their 419 mobility and bioavailability in soil (Majumdar et al., 2015). Consequently, the upward 420 transport of CeO_2 NPs from root to shoot will be limited in soil grown plants and the 421 extent of transport may depend significantly on the amount of water soluble fraction. Our 422 results agreed with the observation of the low root to shoot translocation of CeO₂ NPs in 423 organic matter enriched soil, but contradicted a previous study which indicated that 424 organic matter enriched soil facilitated the uptake and translocation of CeO₂ NPs by corn 425 (Zhao et al., 2012). The discrepancies may derive from the use of different CeO_2 NPs and 426 different plant species and require further investigation.

427 Following the uptake of cerium, we further evaluated whether the different soil 428 fractionation would affect the distribution of cerium in different plant tissues. Consistent 429 with our previous investigation (Zhang et al., 2015), cerium was predominantly 430 accumulated in the pigmented periderm of radish storage roots for both soils (Table 1). 431 Another recent study on the interactions between CeO₂ NPs and carrot (*Daucus carota* 432 L.) also reported that the accumulation of cerium element principally in the taproot peel 433 and the shoots, with significantly lower cerium concentration in the edible flesh (Ebbs et al., 2015). Notably, even though the average concentration in the periderm was ten times 434 435 higher in the 500 mg/kg treated radish than the control radish in this study, high 436 variability between the replicates of treated radish was noticed (51.7-217 mg/kg dry 437 tissue for loamy sand and 45.5-236 mg/kg dry tissue for silty loam). It is likely that the 438 high variability was due to the unequal adsorption of CeO₂ NPs on the skin surface of the

439 storage root and the rinsing process during harvest. The similar cerium concentration in 440 the intermediate and inner layers of the treated and control plants suggested that cerium 441 accumulation in the flesh is limited. Altogether, the results indicate that a primary 442 pathway for cerium accumulation in radish storage roots was physical adsorption on the 443 surface and radial diffusion toward the center which is minimal in this study. 444 Interestingly, the cerium concentration in S2 section of the shoot tissue grown in silty 445 loam was three times higher than their corresponding controls, but such difference was 446 not observed in the sandy loam. Our finding is consistent with the higher shoot 447 concentration in CeO₂ NPs treated radish in silty loam and substantiates our earlier 448 contention that F1 was more readily translocated from radish roots to shoots. A previous 449 study indicated that the cerium taken up from roots is transported to leaves through leaf 450 vein vasculature with the transpiration stream (Zhao et al., 2013) and our results appeared 451 to support that conclusion. It is yet to know, however, whether the translocated cerium 452 was in the CeO₂ NPs form or other chemical forms. 453 In summary, soil characteristics were shown to be an important factor affecting 454 the soil fractionation and subsequent bioavailability of $CeO_2 NPs$ to plants. The 455 accumulation of cerium in radish belowground tissues correlated well with the sum of the 456 first three fractions, suggesting that these fractions were bioavailable to plant roots. 457 However, only the exchangeable fraction correlated well with the element amounts 458 shown to transport from roots to shoots. In addition to their bioavailability, the 459 distribution of cerium in different plant tissues was also affected by the physicochemical 460 properties soils, indicating that the specific soil properties must be an important 461 consideration in the assessment of the fate and transport of engineered nanoparticles in

- the environment.
- 463

464 Acknowledgement

- 465 The authors acknowledge the financial support of the USDA-AFRI (#2012-67005-19585)
- 466 and USDA-AFRI (#2011-67006-30181). Xingmao Ma also acknowledges the Startup
- 467 Support from Texas A&M University.
- 468

469 Author's Contribution

- 470 X.M conceived and supervised the experiment. W. Z and Q. W conducted the experiment
- 471 and W. Z also prepared the first draft of the manuscript. C. M conducted ICP-MS
- 472 analysis. J.W., P. S., S. E, and X. M contributed to data analysis and interpretation and X.
- 473 M also contributed to the writing of the manuscript. All authors read and approved the
- 474 final version of the manuscript.

475
476
477
478
479
480
481
482
102
405
484
485
486
487
488
489
490
491
492
493
101
474
495
496

497 **Reference**

- Allen B.L., Hajek B.F., 1989. Mineral occurrence in soil environments. Minerals in soil
 environments. 2, 199-278.
- Antisari L.V., Carbone S., Fabrizi A., Gatti A., Vianello G., 2011. Response of soil
 microbial biomass to CeO2 nanoparticles. EQA-International Journal of
 Environmental Quality. 7, 1-16.
- Backes C.A., McLaren R.G., Rate A.W., Swift R.S., 1995. Kinetics of cadmium and
 cobalt desorption from iron and manganese oxides. Soil Science Society of
 America Journal. 59, 778-785.
- Bolland M.D.A., Posner A., Quirk J., 1976. Surface charge on kaolinites in aqueous
 suspension. Soil Research. 14, 197-216.
- Bouyoucos G.J., 1962. Hydrometer method improved for making particle size analyses of
 soils. Agronomy Journal. 54, 464-465.
- 510 Cornelis G., Ryan B., McLaughlin M.J., Kirby J.K., Beak D., Chittleborough D., 2011.
 511 Solubility and batch retention of CeO2 nanoparticles in soils. Environmental
 512 science & technology. 45, 2777-2782.
- 513 Corral-Diaz B., Peralta-Videa J.R., Alvarez-Parrilla E., Rodrigo-García J., Morales M.I.,
 514 Osuna-Avila P., Niu G., Hernandez-Viezcas J.A., Gardea-Torresdey J.L., 2014.
 515 Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber
 516 ionome in Raphanus sativus (L). Plant Physiol Biochem. 84, 277-285.
- 517 Ebbs S.D., Bradfield S.J., Kumar P., White J.C., Musante C., Ma X., 2015. Accumulation
 518 of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide
 519 nanoparticles and metal ions. Environmental Science: Nano.
 520 doi:10.1039/C5EN00161G.
- 521 Ernst W., 1996. Bioavailability of heavy metals and decontamination of soils by plants.
 522 Applied geochemistry. 11, 163-167.
- Fieldes M., Swindale L., 1954. Chemical weathering of silicates in soil formation. New
 Zealand J Sci Tech. 36, 140-154.
- 525 Gleyzes C., Tellier S., Astruc M., 2002. Fractionation studies of trace elements in
 526 contaminated soils and sediments: a review of sequential extraction procedures.
 527 TrAC Trends in Analytical Chemistry. 21, 451-467.
- Gui X., Zhang Z., Liu S., Ma Y., Zhang P., He X., Li Y., Zhang J., Li H., Rui Y., 2015.
 Fate and phytotoxicity of CeO 2 nanoparticles on lettuce cultured in the potting soil environment. PloS one. 10, e0134261.
- Holden P.A., Klaessig F., Turco R.F., Priester J.H., Rico C.M., Avila-Arias H., Mortimer
 M., Pacpaco K., Gardea-Torresdey J.L., 2014. Evaluation of exposure
 concentrations used in assessing manufactured nanomaterial environmental
 hazards: are they relevant? Environmental science & technology. 48, 1054110551.
- Hu X., Ding Z., Chen Y., Wang X., Dai L., 2002. Bioaccumulation of lanthanum and
 cerium and their effects on the growth of wheat (*Triticum aestivum* L.) seedlings.
 Chemosphere. 48, 621-629.
- Jada A., Ait Akbour R., Douch J., 2006. Surface charge and adsorption from water onto
 quartz sand of humic acid. Chemosphere. 64, 1287-1295.

541	Li J., Lu Y., Shim H., Deng X., Lian J., Jia Z., Li J., 2010. Use of the BCR sequential
542	extraction procedure for the study of metal availability to plants. Journal of
543	Environmental Monitoring. 12, 466-471.
544	Lin D., Tian X., Wu F., Xing B., 2010. Fate and transport of engineered nanomaterials in
545	the environment. Journal of environmental quality. 39, 1896-1908.
546	López-Moreno M.L., de la Rosa G., Hernández-Viezcas J.Á., Castillo-Michel H., Botez
547	C.E., Peralta-Videa J.R., Gardea-Torresdey J.L., 2010. Evidence of the
548	differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles
549	on soybean (Glycine max) plants. Environmental science & technology. 44, 7315-
550	7320.
551	Ma Y., Zhang P., Zhang Z., He X., Li Y., Zhang J., Zheng L., Chu S., Yang K., Zhao Y.,
552	2015. Origin of the different phytotoxicity and biotransformation of cerium and
553	lanthanum oxide nanoparticles in cucumber. Nanotoxicology. 9, 262-270.
554	Majumdar S., Almeida I.C., Arigi E.A., Choi H., VerBerkmoes N.C., Trujillo-Reyes J.,
555	Flores-Margez J.P., White J.C., Peralta-Videa J.R., Gardea-Torresdey J.L., 2015.
556	Environmental effects of nanoceria on seed production of common bean
557	(<i>Phaseolus vulgaris</i>): a proteomic analysis. Environmental science & technology.
558	49, 13283–13293.
559	Masui T., Hirai H., Imanaka N., Adachi G., Sakata T., Mori H., 2002. Synthesis of
560	cerium oxide nanoparticles by hydrothermal crystallization with citric acid.
561	Journal of materials science letters. 21, 489-491.
562	Naumov A., 2008. Review of the world market of rare-earth metals. Russian Journal of
563	Non-Ferrous Metals. 49, 14-22.
564	Pelletier D.A., Suresh A.K., Holton G.A., McKeown C.K., Wang W., Gu B., Mortensen
565	N.P., Allison D.P., Joy D.C., Allison M.R., 2010. Effects of engineered cerium
566	oxide nanoparticles on bacterial growth and viability. Applied and environmental
567	microbiology. 76, 7981-7989.
568	Post J.E., 1999. Manganese oxide minerals: Crystal structures and economic and
569	environmental significance. Proceedings of the National Academy of Sciences.
570	96, 3447-3454.
571	Rao C.R.M., Sahuquillo A., Lopez-Sanchez J.F., 2010. Comparison of single and
572	sequential extraction procedures for the study of rare earth elements
573	remobilisation in different types of soils. Analytica chimica acta. 662, 128-136.
574	Rauret G., Lopez-Sanchez J., Sahuquillo A., Rubio R., Davidson C., Ure A.,
575	Quevauviller P., 1999. Improvement of the BCR three step sequential extraction
576	procedure prior to the certification of new sediment and soil reference materials.
577	Journal of Environmental Monitoring. 1, 57-61.
578	Rico C.M., Hong J., Morales M.I., Zhao L., Barrios A.C., Zhang JY., Peralta-Videa
579	J.R., Gardea-Torresdey J.L., 2013. Effect of cerium oxide nanoparticles on rice: a
580	study involving the antioxidant defense system and in vivo fluorescence imaging.
581	Environmental science & technology. 47, 5635-5642.
582	Rosenkranz P., Fernández-Cruz M., Conde E., Ramírez-Fernández M., Flores J.,
583	Fernández M., Navas J., 2012. Effects of cerium oxide nanoparticles to fish and
584	mammalian cell lines: An assessment of cytotoxicity and methodology.
585	Toxicology in Vitro. 26, 888-896.

586	Rui Y., Zhang P., Zhang Y., Ma Y., He X., Gui X., Li Y., Zhang J., Zheng L., Chu S.,
587	2015. Transformation of ceria nanoparticles in cucumber plants is influenced by
588	phosphate. Environmental Pollution. 198, 8-14.
589	Sahuquillo A., Rigol A., Rauret G., 2003. Overview of the use of leaching/extraction tests
590	for risk assessment of trace metals in contaminated soils and sediments. TrAC
591	Trends in Analytical Chemistry. 22, 152-159.
592	Schwabe F., Schulin R., Rupper P., Rotzetter A., Stark W., Nowack B., 2014. Dissolution
593	and transformation of cerium oxide nanoparticles in plant growth media. Journal
594	of nanoparticle research. 16, 1-11.
595	Schwabe F., Tanner S., Schulin R., Rotzetter A., Stark W., von Quadt A., Nowack B.,
596	2015. Dissolved cerium contributes to uptake of Ce in the presence of differently
597	sized CeO 2-nanoparticles by three crop plants. Metallomics. 7, 466-477.
598	Tamilmani S., Shan J., Huang W., Raghavan S., Small R., Shang C., Scott B., 2003.
599	Interaction between ceria and hydroxylamine. MRS Proceedings. 767, F3. 3.
600	Ure A.M., Quevauvillerb P., Muntauc H., Griepinkb B., 1993. Speciation of heavy-
601	metals in soils and sediments - an account of the improvement and harmonization
602	of extraction techniques undertaken under the auspices of the BCR of the
603	Commission of the European Communities. International Journal of
604	Environmental Analytical Chemistry. 51, 135-151.
605	Wang Q., Ebbs S.D., Chen Y., Ma X., 2013. Trans-generational impact of cerium oxide
606	nanoparticles on tomato plants. Metallomics. 5, 753-759.
607	Wang Q., Ma X., Zhang W., Pei H., Chen Y., 2012. The impact of cerium oxide
608	nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food
609	safety. Metallomics. 4, 1105-1112.
610	Yin X., Drelich J., 2008. Surface charge microscopy: Novel technique for mapping
611	charge-mosaic surfaces in electrolyte solutions. Langmuir. 24, 8013-8020.
612	Zhang F., Chan SW., Spanier J.E., Apak E., Jin Q., Robinson R.D., Herman I.P., 2002.
613	Cerium oxide nanoparticles: size-selective formation and structure analysis.
614	Applied physics letters. 80, 127-129.
615	Zhang W., Ebbs S.D., Musante C., White J.C., Gao C., Ma X., 2015. Uptake and
616	accumulation of bulk and nano-sized cerium oxide particles and ionic cerium by
617	radish (Raphanus sativus L.). Journal of agricultural and food chemistry. 63, 382–
618	390.
619	Zhang Z., He X., Zhang H., Ma Y., Zhang P., Ding Y., Zhao Y., 2011. Uptake and
620	distribution of ceria nanoparticles in cucumber plants. Metallomics. 3, 816-822.
621	Zhao L., Peralta-Videa J.R., Varela-Ramirez A., Castillo-Michel H., Li C., Zhang J.,
622	Aguilera R.J., Keller A.A., Gardea-Torresdey J.L., 2012. Effect of surface coating
623	and organic matter on the uptake of CeO 2 NPs by corn plants grown in soil:
624	insight into the uptake mechanism. Journal of hazardous materials. 225, 131-138.
625	Zhao L., Sun Y., Hernandez-Viezcas J.A., Hong J., Majumdar S., Niu G., Duarte-Gardea
626	M., Peralta-Videa J.R., Gardea-Torresdey J.L., 2015. Monitoring the
627	environmental effects of CeO2 and ZnO nanoparticles through the life cycle of
628	corn (Zea mays) plants and in situ μ -XRF mapping of nutrients in kernels.
629	Environmental Science & Technology. 49, 2921-2928.
630	Zhao L., Sun Y., Hernandez-Viezcas J.A., Servin A.D., Hong J., Niu G., Peralta-Videa
631	J.R., Duarte-Gardea M., Gardea-Torresdey J.L., 2013. Influence of CeO2 and

632	ZnO nanoparticles on cucumber physiological markers and bioaccumulation of
633	Ce and Zn: a life cycle study. Journal of agricultural and food chemistry. 61,
634	11945-11951.
635	Zhong X., Zhou S., Zhu Q., Zhao Q., 2011. Fraction distribution and bioavailability of
636	soil heavy metals in the Yangtze River Delta—A case study of Kunshan City in
637	Jiangsu Province, China. Journal of hazardous materials. 198, 13-21.
638	
639	
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	

- **Figure 1**: Characterization of CeO2 NPs. (a) TEM image of CeO_2 NPs; (b) The size
- 677 distribution of the NPs; and (c) The XPS spectra of cerium on the surface of CeO₂ NPs.

Figure 2: Schematic illustration of the cutting method of the radish storage root andshoot used for cerium uptake distribution.

Figure 3: Percentage of cerium fractionation in (a). loamy sand and (b). silty loam

determined by the modified BCR sequential extraction procedure. The results shown onthe table beneath the figures represent the average and standard error of three replicates.

- 739 740

741 Figure 4: Adjusted cerium concentrations in different soil fractions. The error bars 742 represent standard error (n=3). Different letters in lower case and upper case represent

743 significant differences between the treatments in loamy sand and silty loam respectively

744 (p<0.05). Asterisks indicate significant differences between two soils at the same CeO₂

745 dosing concentration (p < 0.05).

Figure 5: SEM images of soil samples of. (a): loamy sand control; (b): loamy sand 1000
mg/kg; (c): silty loam control; (d): silty loam 1000 mg/kg. Table below images shows the
weight percentage of detected elements in selected area (red frames in images)

Figure 6: Modified cerium concentrations in different radish tissues after the background cerium concentrations in the control plants were subtracted from the corresponding tissues of treated plants. The error bars represent standard error (n=3). Samples without error bars indicate that the error bars are too small to see on the figures. Different letters in lower case and upper case represent significant differences between the treatments in loamy sand and silty loam respectively (p<0.05). Asterisks indicate significant differences between two kinds of soil at same CeO₂ NPs dosing concentration (p<0.05).

Table 1: The cerium concentration in different parts of radish, data represented the mean

and standard error (n=3). Different letters represent significant differences between the
 treatments

	Soil Type	Treatment	Peri (mg/kg)	L1 (mg/kg)	L2 (mg/kg)	S1 (mg/kg)	S2 (mg/kg)
	Loamy sand	Control	11.4±3.06	7.45±1.38	11.09±1.83	18.83±1.67	$8.85{\pm}0.42^{ab}$
		500 mg/kg	112.9±52.35	10.88±1.61	9.4±1.67	23.12±0.49	$9.81{\pm}1.57^{ab}$
	Silty loam	Control	8.91±0.76	10.43 ± 2.09	8.07 ± 2.97	22.9±4.23	7.00 ± 0.52^{b}
		500 mg/ kg	127.06±56.25	11.49±1.18	8.61±0.32	18.26±3.14	20.58±7.29 ^a
780							
781							
782							
783							
784							
785							
786							
787							
788							
789							
790							
791							
792							
793							
794							
795							
796							