84 research outputs found

    Effects of an Unusual Poison Identify a Lifespan Role for Topoisomerase 2 in Saccharomyces Cerevisiae

    Get PDF
    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as a potentially manageable cause of aging

    A cell based high-throughput screening approach for the discovery of new inhibitors of respiratory syncytial virus

    Get PDF
    Background: Human respiratory syncytial virus (hRSV) is a highly contagious pathogen and is the most common cause of bronchiolitis and pneumonia for infants and children under one year of age. Worldwide, greater than 33 million children under five years of age are affected by hRSV resulting in three million hospitalizations and 200,000 deaths. However, severe lower respiratory tract disease may occur at any age, especially among the elderly or those with compromised cardiac, pulmonary, or immune systems. There is no vaccine commercially available. Existing therapies for the acute infection are ribavirin and the prophylactic humanized monoclonal antibody (Synagis® from MedImmune) that is limited to use in high risk pediatric patients. Thus, the discovery of new inhibitors for hRSV would be clinically beneficial. Results: We have developed and validated a 384-well cell-based, high-throughput assay that measures the cytopathic effect of hRSV (strain Long) in HEp-2 cells using a luminescent-based detection system for signal endpoint (Cell Titer Glo®). The assay is sensitive and robust, with Z factors greater than 0.8, signal to background greater than 35, and signal to noise greater than 24. Utilizing this assay, 313,816 compounds from the Molecular Libraries Small Molecule Repository were screened at 10 μM. We identified 7,583 compounds that showed greater than 22% CPE inhibition in the primary screen. The top 2,500 compounds were selected for confirmation screening and 409 compounds showed at least 50% inhibition of CPE and were considered active. We selected fifty-one compounds, based on potency, selectivity and chemical tractability, for further evaluation in dose response and secondary assays Several compounds had SI50 values greater than 3, while the most active compound displayed an SI50 value of 58.9. Conclusions: A robust automated luminescent-based high throughput screen that measures the inhibition of hRSV-induced cytopathic effect in HEp-2 cells for the rapid identification of potential inhibitors from large compound libraries has been developed, optimized and validated. The active compounds identified in the screen represent different classes of molecules, including aryl sulfonylpyrrolidines which have not been previously identified as having anti-hRSV activity

    (S)-N-(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a Small Molecule Inhibitor Probe for the Study of Respiratory Syncytial Virus Infection

    Get PDF
    A high-throughput, cell-based screen was used to identify chemotypes as inhibitors for human respiratory syncytial virus (hRSV). Optimization of a sulfonylpyrrolidine scaffold resulted in compound 5o that inhibited a virus-induced cytopathic effect in the entry stage of infection (EC50 = 2.3 ± 0.8 µM) with marginal cytotoxicity (CC50 = 30.9 ± 1.1 µM) and reduced viral titer by 100-fold. Compared to ribavirin, sulfonylpyrrolidine 5o demonstrated an improved in vitro potency and selectivity index

    Synthesis of 1-(2-aminopropyl)benzimidazoles, structurally related to the TIBO derivative R82150, with activity against human immunodeficiency virus.

    Full text link
    A number of 1-(2-aminopropyl)-2-mercaptobenzimidazoles related to the TIBO derivatives R82150 have been prepared and tested for their activity against human immunodeficiency virus type 1 (HIV-1). These compounds were all modest inhibitors of the cytophatic effects of HIV-1 in vitro, but only very weak inhibitors of HIV-1 reverse transcriptase (RT).A number of 1-(2-aminopropyl)-2-mercaptobenzimidazole derivatives related to the TIBO derivative R82150 have been prepared and tested for their activity against human immunodeficiency virus type 1 (HIV-1). These compounds are all modest inhibitors of the cytopathic effects of HIV-1 in vitro, but were only weak inhibitors of HIV-1 reverse transcriptase (RT).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30886/1/0000555.pd

    Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2

    Get PDF
    Abstract Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection. Author Summary Alphaviruses occur worldwide, causing significant diseases such as encephalitis or arthritis in humans and animals. In addition, some alphaviruses, such as VEEV, pose a biothreat due to their high infectivity and lack of available treatments. To discover small molecule inhibitors with lead development potential, we used a cell-based assay to screen 348,140 compounds for inhibition of a VEEV-induced cytopathic effect. The screen revealed a scaffold with high inhibitory VEEV cellular potency and low cytotoxicity liability. While most previously reported anti-alphavirus compounds inhibit host proteins, evidence supported that this scaffold targeted the VEEV nsP2 protein, and that inhibition was associated with viral replication. Interestingly, compound resistance studies with VEEV mapped activity to the N-terminal domain of nsP2, to which no known function has been attributed. Ultimately, this discovery has delivered a small molecule-derived class of potent VEEV inhibitors whose activity is coupled to the nsP2 viral protein, a novel target with a previously unestablished biological role that is now implicated in viral replication.This research was supported by the following funding sources: NIH R03MH087448-01A1, University of Louisville Internal Research Initiate grant to DHC, USAMRAA W81XWH-10-2-0064 and W81XWH-08-2-0024 to CBJ. Screening was provided by the Southern Research Specialized Screening Center (U54HG005034-0) and chemistry through the University of Kansas Specialized Chemistry Center (U54HG005031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Revisiting the β-lactams for tuberculosis therapy with a compound-compound synthetic lethality approach

    Get PDF
    The suboptimal effectiveness of β-lactam antibiotics against Mycobacterium tuberculosis has hindered the utility of this compound class for tuberculosis treatment. However, the results of treatment with a second-line regimen containing meropenem plus a β-lactamase inhibitor were found to be encouraging in a case study of extensively drug-resistant tuberculosis (M. C. Payen, S. De Wit, C. Martin, R. Sergysels, et al., Int J Tuberc Lung Dis 16:558-560, 2012, https://doi.org/10.5588/ijtld.11.0414). We hypothesized that the innate resistance of M. tuberculosis to β-lactams is mediated in part by noncanonical accessory proteins that are not considered the classic targets of β-lactams and that small-molecule inhibitors of those accessory targets might sensitize M. tuberculosis to β-lactams. In this study, we screened an NIH small-molecule library for the ability to sensitize M. tuberculosis to meropenem. We identified six hit compounds, belonging to either the N-arylindole or benzothiophene chemotype. Verification studies confirmed the synthetic lethality phenotype for three of the N-arylindoles and one benzothiophene derivative. The latter was demonstrated to be partially bioavailable via oral administration in mice. Structure-activity relationship studies of both structural classes identified analogs with potent antitubercular activity, alone or in combination with meropenem. Transcriptional profiling revealed that oxidoreductases, MmpL family proteins, and a 27-kDa benzoquinone methyltransferase could be the targets of the N-arylindole potentiator. In conclusion, our compound-compound synthetic lethality screening revealed novel small molecules that were capable of potentiating the action of meropenem, presumably via inhibition of the innate resistance conferred by β-lactam accessory proteins. β-Lactam compound-compound synthetic lethality may be an alternative approach for drug-resistant tuberculosis

    IL-12Rβ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey

    Get PDF
    BACKGROUND AND OBJECTIVES: In the last decade, autosomal recessive IL-12Rβ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12Rβ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common. METHODS AND PRINCIPAL FINDINGS: We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12Rβ1 deficiency. Despite the small sample studied, our findings suggest that IL-12Rβ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease. SIGNIFICANCE: This finding may have important medical implications, as recombinant IFN-γ is an effective treatment for mycobacterial infections in IL-12Rβ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity

    Chikungunya Virus Neutralization Antigens and Direct Cell-to-Cell Transmission Are Revealed by Human Antibody-Escape Mutants

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop “groove” as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis

    Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease

    Get PDF
    Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine
    corecore