180 research outputs found

    Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation

    Get PDF
    Eradication of human immunodeficiency virus (HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents (LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliable identification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials

    Long non-coding RNAs and latent HIV : a search for novel targets for latency reversal

    Get PDF
    The latent cellular reservoir of HIV is recognized as the major barrier to cure from HIV infection. Long non-coding RNAs (lncRNAs) are more tissue and cell type-specific than protein coding genes, and may represent targets of choice for HIV latency reversal. Using two in vitro primary T-cell models, we identified lncRNAs dysregulated in latency. PVT1 and RP11-347C18.3 were up-regulated in common between the two models, and RP11-539L10.2 was down-regulated. The major component of the latent HIV reservoir, memory CD4+ T-cells, had higher expression of these lncRNAs, compared to naive T-cells. Guilt-by-association analysis demonstrated that lncRNAs dysregulated in latency were associated with several cellular pathways implicated in HIV latency establishment and maintenance: proteasome, spliceosome, p53 signaling, and mammalian target of rapamycin (MTOR). PVT1, RP11-347C18.3, and RP11-539L10.2 were down-regulated by latency reversing agents, suberoylanilide hydroxamic acid and Romidepsin, suggesting that modulation of lncRNAs is a possible secondary mechanism of action of these compounds. These results will facilitate prioritization of lncRNAs for evaluation as targets for HIV latency reversal. Importantly, our study provides insights into regulatory function of lncRNA during latent HIV infection

    A switchable controlled-NOT gate in a spin-chain NMR quantum computer

    Full text link
    A method of switching a controlled-NOT gate in a solid-stae NMR quantum computer is presented. Qubits of I=1/2 nuclear spins are placed periodically along a quantum spin chain (1-D antiferromagnet) having a singlet ground state with a finite spin gap to the lowest excited state caused by some quantum effect. Irradiation of a microwave tuned to the spin gap energy excites a packet of triplet magnons at a specific part of the chain where control and target qubits are involved. The packet switches on the Suhl-Nakamura interaction between the qubits, which serves as a controlled NOT gate. The qubit initialization is achieved by a qubit initializer consisting of semiconducting sheets attached to the spin chain, where spin polarizations created by the optical pumping method in the semiconductors are transferred to the spin chain. The scheme allows us to separate the initialization process from the computation, so that one can optimize the computation part without being restricted by the initialization scheme, which provides us with a wide selection of materials for a quantum computer.Comment: 8 pages, 5 figure

    Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency

    Get PDF
    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a “shock and kill” strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA (“shock”), treatment with SAHA did not result in a reduction of reservoir size (“kill”). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in “shock and kill” strategies. CD4+ T cells from HIV seronegative donors were treated with 1 µM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24 hours. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography - tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2,982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression

    Integrating Susceptibility into Environmental Policy: An Analysis of the National Ambient Air Quality Standard for Lead

    Get PDF
    Susceptibility to chemical toxins has not been adequately addressed in risk assessment methodologies. As a result, environmental policies may fail to meet their fundamental goal of protecting the public from harm. This study examines how characterization of risk may change when susceptibility is explicitly considered in policy development; in particular we examine the process used by the U.S. Environmental Protection Agency (EPA) to set a National Ambient Air Quality Standard (NAAQS) for lead. To determine a NAAQS, EPA estimated air lead-related decreases in child neurocognitive function through a combination of multiple data elements including concentration-response (CR) functions. In this article, we present alternative scenarios for determining a lead NAAQS using CR functions developed in populations more susceptible to lead toxicity due to socioeconomic disadvantage. The use of CR functions developed in susceptible groups resulted in cognitive decrements greater than original EPA estimates. EPA’s analysis suggested that a standard level of 0.15 µg/m3 would fulfill decision criteria, but by incorporating susceptibility we found that options for the standard could reasonably be extended to lower levels. The use of data developed in susceptible populations would result in the selection of a more protective NAAQS under the same decision framework applied by EPA. Results are used to frame discussion regarding why cumulative risk assessment methodologies are needed to help inform policy development

    Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl

    Get PDF
    Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP3R) via its BH4 domain, thereby suppressing IP3R Ca2+-flux properties and protecting against Ca2+-dependent apoptosis. Here, we directly compared IP3R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP3R nor inhibited IP3-induced Ca2+ release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP3R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP3R binding and inhibition. This difference in IP3R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP3R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP3R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca2+-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca2+ signaling and apoptosis

    Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    Get PDF
    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die

    Correlations of Gene Expression with Blood Lead Levels in Children with Autism Compared to Typically Developing Controls

    Get PDF
    The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis × log2 Pb) < 0.05). These genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded
    corecore