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Abstract

Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a “shock 

and kill” strategy to cure HIV-infected patients. While it was effective at inducing expression of 

HIV RNA (“shock”), treatment with SAHA did not result in a reduction of reservoir size (“kill”). 

We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and 
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proteome to dissect its mechanisms of action that may explain its limited success in “shock and 

kill” strategies. CD4+ T cells from HIV seronegative donors were treated with 1 µM SAHA or its 

solvent dimethyl sulfoxide (DMSO) for 24 hours. Protein expression and post-translational 

modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional 

liquid chromatography - tandem mass spectrometry. Gene expression was assessed by Illumina 

microarrays. Using limma package in the R computing environment, we identified 185 proteins, 

18 phosphorylated forms, 4 acetylated forms and 2,982 genes, whose expression was modulated 

by SAHA. A protein interaction network integrating these 4 data types identified the HIV 

transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and 

acetylated protein levels. Further functional category assessment of proteins and genes modulated 

by SAHA identified gene ontology terms related to NFκB signaling, protein folding and 

autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous 

host cell transcripts, proteins and post-translational modifications of proteins, which would be 

expected to have very mixed effects on the induction of HIV-specific transcription and protein 

function. Proteome profiling highlighted a number of potential counter-regulatory effects of 

SAHA with respect to viral induction, which transcriptome profiling alone would not have 

identified. These observations could lead to a more informed selection and design of other HDACi 

with a more refined targeting profile, and prioritization of latency reversing agents of other classes 

to be used in combination with SAHA to achieve more potent induction of HIV expression.
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1. Introduction

The persistent cellular reservoir of HIV provirus is a major obstacle to a cure (Richman et 

al., 2009). The “shock and kill” treatment strategy has been envisioned as a controlled 

induction of virus reactivation in the presence of combination antiretroviral therapy (cART) 

to reveal latently infected cells for immune system recognition and destruction (Ylisastigui 

et al., 2004). Histone deacetylase (HDAC) inhibitor (HDACi) suberoylanilide hydroxamic 

acid (SAHA), an FDA-approved compound for treatment of cutaneous T cell lymphoma 

(Mann et al., 2007), has been used in clinical trials to reactivate HIV to reduce the size of the 

latent reservoir (Archin et al., 2014; Archin et al., 2012; Elliott et al., 2014). Exposure to 

HDACis is tightly associated with histone hyperacetylation and chromatin decondensation, 

which provides a transcriptionally favorable environment for HIV reactivation (Matalon et 

al., 2011). SAHA was effective at inducing HIV RNA expression in most patients on cART 

with suppressed viremia (Archin et al., 2012; Elliott et al., 2014); however, treatment with 

SAHA did not result in a reduction of reservoir size (Archin et al., 2014; Elliott et al., 2014). 

SAHA is also used as a synergistic agent to screen in vitro for other latency reversing agents 

(LRAs); therefore, limitations of its activity require further elucidation. Understanding 

potential counter-regulatory effects of SAHA on HIV reactivation will guide the selection of 

modifications of this compound and prioritization of LRAs in combination therapies.
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SAHA was well tolerated in HIV-infected patients (Archin et al., 2014; Archin et al., 2012; 

Elliott et al., 2014), and an in vitro treatment of primary CD4+ T cells with a physiological 

concentration of SAHA elicited only modest effects on gene expression (Beliakova-Bethell 

et al., 2013). However, genes induced by SAHA may specifically regulate the state of HIV 

latency (Shirakawa et al., 2013), so that the net effect of SAHA on these genes results in 

insufficient viral induction to kill a cell. The function of non-histone targets of HDACs (e.g. 

chaperone protein HSP90) may also be modulated by SAHA (Choudhary et al., 2009). 

SAHA binds not only HDACs, but other proteins as well (Bantscheff et al., 2011), opening 

the possibility for direct regulation of additional targets. A non-histone effect of SAHA 

relevant to HIV reactivation was previously demonstrated by the Peterlin group (Contreras et 

al., 2009). In this case, SAHA promoted HIV reactivation by causing the release of positive 

transcription elongation factor (p-TEFb) from its inactive complex, which is required for 

Tat-mediated transcriptional elongation. Ultimately, multiple steps in the HIV replication 

cycle have to be successfully completed to reveal the infected cell to the immune system. 

These include cell signaling leading to proper assembly of transcription factors on the long 

terminal repeat (LTR), transcription, RNA splicing, RNA nuclear export, protein translation, 

and membrane trafficking. Systems-wide studies would enhance our understanding of 

complex effects of SAHA on key cellular pathways and processes required for HIV 

reactivation.

RNA expression profiling by microarrays and RNA-Seq technology have been the foremost 

strategies for identifying genome-wide effects of a disease or a treatment. Studies using 

SAHA demonstrated downregulation of a subset of genes (Beliakova-Bethell et al., 2013; 

LaBonte et al., 2009; Wozniak et al., 2010), which is consistent with the existence of the 

secondary mechanisms of action and cannot be explained by chromatin decondensation. 

Transcriptomic methods are sensitive and capable of detecting the majority of the annotated 

genes; however, gene expression studies do not uncover the effects at the functional (protein) 

level. Liquid chromatography - mass spectrometry (LC-MS) based proteomics methods may 

be used to confirm functionality of transcripts. In addition, despite currently being less 

sensitive than transcriptomics, LC-MS proteomics can identify the endophenotypic effects 

not otherwise reflected in the transcriptome including the occurrence of post-transnationally 

modified proteins. We have therefore performed non-targeted quantitative iTRAQ 

proteomics experiments by ultra-high precision two-dimensional LC-MS using human 

primary CD4+ T cells treated with SAHA. By combining proteomic and transcriptomic 

datasets, we performed integrated data analysis for a more complete characterization of the 

secondary effects of SAHA. Based on protein function established in published literature, 

we propose that some of the observed effects of SAHA may have relevance to HIV 

reactivation, i.e. enhance or inhibit HIV transcription.

2. Materials and Methods

2.1. CD4+ T cell isolation and SAHA treatment

Healthy donor volunteers provided written informed consent using a protocol approved by 

UCSD IRB. Primary CD4+ T cells were isolated and cultured as described previously 

(Beliakova-Bethell et al., 2013). All CD4+ T cell samples had >98% purity and <5% 
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activation (HLA-DR+), as assessed by flow cytometry. Prior to treatment, cell concentration 

was adjusted to 2.5 million per ml with fresh medium. Cells were treated with 1 µM SAHA 

or its solvent dimethyl sulfoxide (DMSO) and plated into 6-well tissue culture plates at 2 ml/

well. Following 24 hours of treatment, 10–15 million cells were collected after washing 4 

times with 50 ml phosphate buffered saline to remove all traces of serum proteins. Cell 

pellets were frozen in dry ice/ethanol bath and stored at −80°C until protein isolation. A 

separate sample set was treated to validate gene expression by a method independent of high 

throughput profiling, droplet digital polymerase chain reaction (ddPCR) [(Beliakova-Bethell 

et al., 2014) and Supplementary Methods].

2.2. Proteomics and transcriptomics datasets

Protein was isolated and liquid chromatography - tandem mass spectrometry was performed 

as described previously (Al-Daghri et al., 2014; Manousopoulou et al., 2015; Papachristou et 

al., 2013). Briefly, 100 µg of protein from each sample was extracted, reduced, alkylated, 

and proteolysed with trypsin. Peptides were labeled with iTRAQ 8-plex, pooled and 

subjected to two dimensions of liquid chromatography, and were characterized with nano-

capillary ultra-performance liquid chromatography hyphenated with a nanospray ionization 

hybrid LTQ / FT-Obitrap Elite ultra-high resolution mass spectrometry system. Unprocessed 

raw data files were searched by Proteome Discoverer for native, phosphorylated and 

acetylated peptides at a peptide false discovery rate of <1% against the human Uniprot 

proteome. For more details on protein preparation and proteomics, please refer to 

Supplementary Methods. The mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium (Vizcaíno et al., 2014) via the PRIDE partner repository 

(PXD002150). Transcriptomic data that assessed the effects of SAHA (1 µM) in CD4+ T 

cells was obtained from our previously published SAHA dose responsive Illumina 

microarray dataset (Reardon et al., 2015) at the Gene Expression Omnibus (GSE66994).

2.3 Statistical analyses

To identify detected proteins, a statistical processing approach was used that accounts for 

key mass spectral features to reduce the effects of peptide co-isolation on the resulting 

iTRAQ reporter ions and thus increase the accuracy of relative protein expression. Proteins 

were median-normalized and converted to log2 paired ratios (SAHA/DMSO). Protein 

expression values were obtained by averaging peptide intensity values and ratio-filtered. 

Filtering was not performed on acetylated or phosphorylated forms due to their intrinsic low 

abundance. Determination of differentially expressed proteins (DEPs), their phosphorylated 

(DPPs) and acetylated (DAPs) forms, and genes (DEGs) was done using limma (Smyth, 

2004). Genes were further filtered on fold change (|log2 FC| > 1) for the protein interaction 

network (PIN). The PIN was constructed using Metacore™ from GeneGo, Inc. and 

visualized with Cytoscape (Shannon et al., 2003). Node colour was subdivided into sections 

using the MultiColoredNodes package (Warsow et al., 2010). Gene Ontology (GO) analysis 

was performed using Functional Analysis of Individual Microarray Expression (FAIME) 

(Yang et al., 2012). Gene membership for each GO term was determined with BioMart 

(Kasprzyk, 2011) using the Ensemble 78 Genes database and the GRCh38 Dataset (Flicek et 

al., 2014). GO term differential expression between the SAHA and DMSO control 

conditions was determined using a paired Student's t-test. In a discovery driven approach, 
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proteins and protein GO terms with a nominal p-value (p) <0.05 were considered significant. 

For genes and gene GO terms, a false discovery rate-corrected p-value (FDR) <0.05 

(Benjamini and Hochberg, 1995) was considered significant. Genes and proteins are referred 

to by official gene symbol except where noted. Please refer to the Supplementary Methods 

for details of data analysis procedures.

3. Results

3.1. Proteins and genes modulated by SAHA

The quantitative proteomics profiled 1,547 proteins, identifying 185 DEPs, 18 DPPs and 4 

DAPs (p<0.05) between CD4+ T cells from 4 donors treated with SAHA or the DMSO 

control (Table S1). Identification of DPPs and DAPs was possible thanks to the in-depth and 

orthogonal two-dimensional liquid chromatographic separation of the tryptic peptides 

followed by their ultra-high resolution mass spectrometry. However, their non-targeted 

detection suggests that these in vivo modified proteins had higher abundance relative to 

other in vivo modified proteins not detected in this study that typically require prior 

enrichment for their analysis (Papachristou et al., 2013). To compare the effect of SAHA 

treatment between the proteome and transcriptome, microarray gene expression data were 

selected from our previous SAHA dose responsive study (Reardon et al., 2015). A paired 

analysis identified 2,982 genes modulated by SAHA (FDR<0.05) in CD4+ T cells from 6 

donors (see Table S2 for the complete list of DEGs at the probe level). The modulation of a 

large number of these genes was confirmed at the protein level with 56 up- and 49 

downregulated at both levels (Figure 1). Even though an order of magnitude more DEGs 

were identified compared to DEPs, there was near complete agreement in the direction of 

modulation by SAHA when overlapped at the RNA and protein levels.

3.2. PINs for proteins and genes modulated by SAHA

It was hypothesized that the most important genes modulated by SAHA would be affected at 

several different levels (i.e., DEGs, DEPs, DPPs and DAPs). To integrate the 4 datasets, they 

were superimposed onto a PIN (Figures 2 and S1). For visualization purposes, only genes 

and proteins with 5 or more connections are presented in Figure 2, whereas the complete 

PIN is presented in Figure S1. These PINs revealed that high mobility group (HMG) AT-

hook 1 (HMGA1) was upregulated at the RNA (DEG), protein (DEP) and acetylated protein 

(DAP) levels. Heat shock protein 70 (HSP70) was represented in the PIN by 2 genes, 

HSPA1A, upregulated at the protein level, and HSPA2, upregulated at the RNA level. V-ets 

avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was downregulated by SAHA 

at the protein level, including total and phosphorylated (pS294) forms. A number of well-

connected genes were modulated at the protein level only, e.g. lymphoid enhancer-binding 

factor 1 (LEF1), lysine (K)-specific demethylase 1A (KDM1A), and inhibitor of kappa light 

polypeptide gene enhancer in B-cells, kinase beta (IKBKB). Another set of well-connected 

genes was regulated by SAHA only at the RNA level, e.g. v-MYC avian myelocytomatosis 

viral oncogene homolog (MYC), enhancer of zeste homolog 2 (EZH2), activator protein 1 

(AP-1), and nuclear receptor coactivator 3 (NCOA3). While well-connected genes 

modulated at the protein level by SAHA may have regulatory roles for other genes, the role 
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of genes modulated by SAHA at the RNA level would need further confirmation by more 

sensitive methods of protein detection.

3.3. Functional analysis of proteins and genes modulated by SAHA

To better understand the biological processes modulated by the well-connected proteins in 

the PIN, DEPs and DEGs were subjected to GO analysis using FAIME (Yang et al., 2012). 

An order of magnitude fewer proteins was detected by quantitative proteomics compared to 

genes detected by microarrays. Therefore, protein representation across the GO terms was 

assessed. A good correlation (R2=0.96) was observed between the number of genes and 

proteins mapping to all the GO terms (Figure S2). The exceptions were the GO terms 

Plasma membrane proteins and Integral components of membrane, which were under-

represented for proteins, consistent with their hydrophobic properties and low abundance 

that result in poor extraction (Helbig et al., 2010). Overall, 1,484 GO terms were upregulated 

and 935 downregulated by SAHA at the RNA level. At the protein level, 119 GO terms were 

upregulated and 146 downregulated. There was good overlap in GO terms (N=40 up and 

N=20 down) that were significantly modulated by SAHA at the RNA and protein levels 

(Figure 3 and Table S3). Terms related to chromatin regulation, Negative regulation of 
chromatin silencing and Nuclear euchromatin, were upregulated by SAHA (Figure 4). Terms 

related to histone acetylation and histone acetyltransferase complex were downregulated, as 

was observed previously with a lower dose of SAHA (Beliakova-Bethell et al., 2013). 

Positive regulation of T cell proliferation and Positive regulation of T cell activation were 

downregulated. Importantly, a number of terms functionally relevant to HIV replication were 

identified. Regulation of I-kappaB kinase/NF-kappaB signaling, Protein binding involved in 
protein folding, Chaperone mediated protein folding requiring cofactor, and Autophagic 
vacuole were uregulated by SAHA (Figure 4).

3.4. Validation of gene expression by ddPCR

Six donors, different from the ones who participated in profiling studies, were recruited. 

Three genes, whose expression was modulated by SAHA both at the RNA and protein 

levels, were independently validated using ddPCR. Two of the selected genes were 

upregulated (HMGA1 and ASF1A) and one downregulated (AES) by SAHA. All three 

genes were significantly modulated by SAHA as determined by ddPCR (Figure 5), in the 

same direction as in the microarray and quantitative proteomics studies.

4. Discussion

4.1. SAHA transcriptional and post-transcriptional regulation

Quantitative proteomics identified 185 proteins significantly modulated by SAHA. Over half 

of these proteins (56%) appear to be regulated at the transcriptional level since their 

corresponding transcripts were also modulated by SAHA (Figure 1). The remaining proteins 

were not modulated at the RNA level and would not have been detected in a transcriptomics 

approach, demonstrating the added value of a proteomics approach. Modulation of a protein 

may be a result of function of another protein whose transcript was upregulated. For 

example, upregulation of proteins required for translation (e.g. translation initiation factor 

EIF5B (Pestova et al., 2000)), may result in increase of translation from existing messenger 
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RNAs (Schwanhausser et al., 2011). Protein expression may also be regulated post-

translationally via activity of other proteins modulated by SAHA. For example, 3 proteins 

that regulate ubiqutination state were modulated by SAHA: E3 ubiqutin ligase DTX3L, E2 

ubiquting-cojugating enzyme UBE2H, and a deubiquitinase USP13. It is also possible that 

the changes in protein expression were the result of earlier transient changes in gene 

expression, which were not captured in the present study. In addition, even though 

enrichment for post-translationally modified peptides was not performed, changes in 

expression of 4 acetylated and 18 phosphorylated proteins after SAHA treatment were 

detected. Altogether, these data are consistent with the idea that SAHA may have much 

broader secondary effects beyond chromatin modification than previously recognized.

Among the detected 1,547 proteins, 260 were differentially expressed only at the RNA, and 

not at the protein level, consistent with the idea that transcriptional effects of SAHA do not 

always translate into protein production (Mohammadi et al., 2014). However, this conclusion 

should be interpreted with caution due to the smaller sample size used in the proteomics part 

of the present study (N=4 for the protein vs N=6 for gene expression analyses). Since cells 

from different biological donors were used for proteomics and transcriptomics studies, it is 

also possible that some of the variation between identified DEPs and DEGs was the result of 

donor-to-donor differences in response to SAHA. However, donor-to-donor variation did not 

likely play a large role since whenever proteins and transcripts were both detected as 

differentially expressed, they were modulated in the same direction (Figure 1), and 

expression of selected genes was confirmed by an independent method in an independent 

cohort (Figure 5).

4.2. Known effects of SAHA translate from the RNA to the protein level

Identification of GO terms related to previously recognized effects of SAHA at the RNA and 

protein levels gives confidence that the chosen proteomics methodology provides reliable 

data. For example, upregulation of genes encoding histones, but downregulation of genes 

encoding components of acetyltransferase complexes was observed previously by 

transcriptomics (Beliakova-Bethell et al., 2013). Downregulation of acetyltransferases 

suggests potential mechanisms by which cells attempt to regain control of acetylation 

following removal by SAHA of their ability to control acetylation through HDACs. Another 

process known to be downregulated by SAHA was T cell activation (Mohammadi et al., 

2014; Reardon et al., 2015). Both Positive regulation of T cell activation, and Positive 
regulation of T cell proliferation, were downregulated by SAHA at the RNA and protein 

levels (Figure 4).

4.3. Effects of SAHA on RNA and proteins with a role in HIV reactivation

A number of HMG proteins (HMGA1, HMGN1, HMG20B, LEF1) were modulated by 

SAHA at the protein and/or RNA levels. Like histones, HMG proteins regulate chromatin 

dynamics, dependent on post-translational modifications (Zhang and Wang, 2010). The most 

remarkable observation, made possible by using integrated proteomics and transcriptomics 

data, was the upregulation of HMGA1 at the RNA and protein levels (Figure 2, Tables S1 

and S2), as well as a consistent upregulation of its acetylated form (Figure S3). Two 

mechanisms by which HMGA1 interferes with HIV transcription have been demonstrated. 
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First, it competes with Tat for TAR binding and inhibits both basal and Tat-mediated HIV 

transcription (Eilebrecht et al., 2013). Second, HMGA1 inhibits transcription of host genes, 

as well as HIV, by recruiting inactive p-TEFb to target promoters (Eilebrecht et al., 2014). 

Even though the observed increase of HMGA1 protein was relatively small in the present 

study (1.15-fold), experimental overexpression (20% increase) (Eilebrecht et al., 2013) 

resulted in a measurable reduction of LTR activity proportionate to levels of HMGA1 
expression. Thus, upregulation of HMGA1 by SAHA would appear to have an undesirable 

negative effect with respect to HIV reactivation. The HMGA1 protein possesses 5 lysine 

residues that can be acetylated (Zhang et al., 2007). Of these, acK64 and acK70 have a 

known function in interferon-beta transcriptional switch in response to viral infection 

(Munshi et al., 2001). In the present study, the acK14 form of HMGA1 was upregulated by 

SAHA, for which no specific function has yet been demonstrated.

Identification of HMGA1 (Figure 2) prompted a more in-depth analysis of individual 

proteins that were modulated by SAHA. We performed a literature search on DEPs and 

“HIV” or “HIV latency” to determine whether any other proteins modulated by SAHA, 

besides HMGA1, have a role in activation or repression of HIV transcription (Table 1). 

Three of the proteins that were found in this search were modulated by SAHA at the RNA 

level as well (Table 1), and were confirmed by ddPCR (Figure 5). More than half of the 

identified proteins were not modulated by SAHA at the RNA level. Change in RNA may be 

transient for some genes, as was noted by Elliott and colleagues (Elliott et al., 2014). For 

example, BRD2 was detected in their study at the RNA level 2 hours post-treatment, while 

in the present study it was detected at the protein, but not the RNA level, 24 hours post-

treatment. Thus, a proteomics approach has added value to the transcriptomic approach by 

capturing some of the transient effects on genes at the protein level.

GO terms, which may be relevant to HIV reactivation and were modulated by SAHA at the 

RNA and protein levels, included Regulation of I-kappaB kinase/NF-kappaB signaling, 
Protein binding involved in protein folding, Chaperone mediated protein folding requiring 
cofactor, and Autophagic vacuole (Figure 4 and Table S3). NFκB signaling is well 

recognized in HIV transcriptional activation (Nabel and Baltimore, 1987; Osborn et al., 

1989). Interestingly, individual genes and proteins significantly upregulated by SAHA and 

mapping to Regulation of I-kappaB kinase/NF-kappaB signaling had opposite effects on 

NFκB activity. For example, TNFA, F2RL1/PAR2 (DEGs) and HSPB1 (DEP) activate 

NFκB (Osborn et al., 1989; Parcellier et al., 2003; Sales et al., 2015) and thus promote HIV 

reactivation, while ZFAND6 (DEG) represses NFκB (Chang et al., 2011). In addition, 

IKBKB (DEP) phosphorylates the inhibitor in the inhibitor/NFκB complex (Mercurio et al., 

1997), causing dissociation of the inhibitor and activation of NFκB. Its downregulation by 

SAHA would thus have a negative effect with respect to HIV reactivation. Protein folding 

may have a role in HIV reactivation, because sequential actions of HSP70 and HSP90 are 

required for proper folding and stabilization of cyclin-dependent kinase 9 (Cdk9) and 

assembly of p-TEFb (O'Keeffe et al., 2000). Recently, the role of autophagy in HDACi-

induced HIV reactivation and clearance of infected cells has become of interest. In 

monocyte-derived macrophages, intracellular HIV was shown to be degraded via canonical 

autophagy pathway upon reactivation with HDACis (Campbell et al., 2015). Lysosomal 

destabilization following HDACi treatment promoted death of HIV-infected cells, even with 
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incomplete activation of HIV (Stankov et al., 2015). These results indicate the importance of 

autophagy when using SAHA, and other HDACis, for HIV reactivation.

4.4. Conclusions and implications

The present study is the first to our knowledge to identify proteins and their post-

translationally modified forms modulated by SAHA in human primary CD4+ T cells. 

Combined with the analysis of induced transcriptomic changes, this study demonstrates 

global regulatory networks affected by SAHA treatment and enhances our understanding of 

the secondary mechanisms of SAHA action. Expression of a number of genes and proteins 

with previously reported roles in HIV transcriptional control was modulated by SAHA; 

some of these effects would appear to be inhibitory for HIV reactivation. Identification of 

these counter-regulatory effects of SAHA on HIV induction have the potential to strongly 

impact selection and modification of HDACis and prioritization of other LRAs for future 

evaluations and advancement to clinical trials. Better potencies for HIV reactivation of the 

HDACis Romidepsin (Wei et al., 2014) and Panobinostat (Rasmussen et al., 2013) may be 

due to the lower impact of secondary negative effects possessed by SAHA, which warrants 

further investigation. Synergistic HIV reactivation when using SAHA with Protein Kinase C 

(PKC) agonists, such as prostratin and bryostatin (Laird et al., 2015; Williams et al., 2004), 

may be due to negating adverse effects of SAHA on NFκB signaling pathway by these 

LRAs. Prostratin and bryostatin are not suitable for use in vivo due to side effects or limited 

availability; however, other PKCs, such as Ingenol derivatives (Jiang et al., 2014; José et al., 

2014), warrant further testing in combination with SAHA using cells from HIV-infected 

patients ex vivo. Proteome profiling performed in this study revealed a number of potential 

counter-regulatory effects of SAHA not present at the transcript level. We would therefore 

recommend using transcriptomic and proteomic profiling as two complementary techniques, 

transcript profiling being a more sensitive method, and protein profiling for confirmation of 

transcripts and detection of protein-specific effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

SAHA suberoylanilide hydroxamic acid

DEPs differentially expressed proteins

DAPs differentially expressed acetylated forms of proteins

DPPs differentially expressed phosphorylated forms of proteins

DEGs differentially expressed genes

UCSD University of California, San Diego

Glossary

cART combination antiretroviral therapy

DMSO dimethyl sulfoxide

FAIME Functional Analysis of Individual Microarray Expression

FDA Food and Drug Administration

FDR false discovery rate-adjusted p-value

GO Gene Ontology

HDAC histone deacetylase

HDACi histone deacetylase inhibitor

HIV human immunodeficiency virus

HMG high mobility group

IRB Institutional Review Board

iTRAQ isobaric tags for relative and absolute quantitation

LTR long terminal repeat

PIN protein interaction network

PKC protein kinase C

p-TEFb positive transcription elongation factor

SAHA suberoylanelide hydroxamic acid
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• SAHA induces HIV RNA expression, but does not reduce the size of the 

persistent cellular reservoir of HIV provirus.

• We analyzed proteome and transcriptome changes induced by SAHA in 

human primary CD4+ T cells.

• Positive and negative effects of SAHA on genes and proteins with a role in 

HIV reactivation from latency were identified.

• These results may impact selection and modification of HDACis and 

prioritization of other compounds for future evaluations.
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Figure 1. Overlap between differentially expressed proteins (DEPs, p<0.05) and genes (DEGs, 
FDR<0.05)
DEPs and DEGs were identified using linear modeling in R (package limma). The venn 

diagram was constructed using the VennDiagram package in R. Up- and downregulated 

genes and proteins are shown.

White et al. Page 16

Antiviral Res. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Protein interaction network (PIN) for combined DEPs, DPPs, DAPs and DEGs
The PIN was constructed using Metacore, and visualized using Cytoscape. All 185 DEPs, 18 

DPPs, 4 DAPs and 368 DEGs (after filtering using FDR<0.05 and |log2FC| > 1) were 

included, removing redundancies. Nodes were color coded according to fold changes 

(log2FC = −1 to log2FC = 1), in 4 sections corresponding to DEGs, DEPs, DPPs and DAPs 

(as indicated by the key). Only nodes that had 5 or more connections to other DEPs or DEGs 

are shown, while nodes with fewer connections were hidden to improve the quality of the 

image. Several well-connected DEPs and DEGs in the PIN represent transcription factors 

with a recognized role in HIV transcriptional control. Green and red lines refer to positive 

and negative regulation, respectively, whereas grey lines depict unspecified effects. The red 
circle highlights HMGA1.
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Figure 3. Overlap between GO terms modulated by SAHA at the RNA and protein levels
GO terms modulated by SAHA were identified using FAIME. The venn diagram was 

constructed using the VennDiagram package in R. Up- and down-regulated GO terms are 

shown.
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Figure 4. GO terms significantly modulated by SAHA
GO terms modulated by SAHA were identified using FAIME. Terms related to known 

effects of SAHA and effects of SAHA relevant to HIV reactivation are shown. The heatmap 

represents values obtained by subtraction of a GO term average FAIME score for DMSO 

control from a GO term average FAIME score for SAHA (Δ FAIME Score). Red, the 

difference in FAIME score is greater than 0, and GO term is upregulated as the result of 

SAHA treatment. Blue, the difference in FAIME score is less than 0, and GO term is 

downregulated as the result of SAHA treatment. Count refers to the number of cells in the 

heatmap with the indicated difference in FAIME scores between SAHA and DMSO 

controls. P1 through P4 indicate samples used for protein analysis; G1 through G6 indicate 

samples used for gene expression analysis. The same genes and proteins were represented in 

the GO terms Histone H4-K5 acetylation and Histone H4-K8 acetylation, so these terms are 

depicted by a single row on the heatmap.
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Figure 5. Validation of gene expression by droplet digital PCR (ddPCR)
Number of molecules of each target mRNA was normalized to the number of molecules of 

the normalizer mRNA (RPL27) in one nanogram of total RNA (expressed as copies per 

thousand RPL27 molecules). Normality of the distribution and equality of variance in the 

DMSO and SAHA treated groups were assessed in the R computing environment, and either 

t-test (HMGA1 and ASF1A) or Wilcoxon signed rank test (AES) were performed to assess 

the difference of expression induced by SAHA. The experiment was performed with cells 

from 6 independent donors. Error bars represent standard deviation. **, p<0.01; *, 

0.01<p<0.05.
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