651 research outputs found

    Autoantibodies against retinal proteins in paraneoplastic and autoimmune retinopathy

    Get PDF
    BACKGROUND: Autoimmune retinal degeneration may occur in patients who present with sudden or, less commonly, subacute loss of vision of retinal origin, associated with an abnormal ERG, through the action of autoantibodies against retinal proteins. Often the patients are initially diagnosed with or suspected of having a paraneoplastic retinopathy (PR), such as cancer-associated retinopathy (CAR). However, there is limited information on the occurrence, the specificity of autoantibodies in these patients, and their association with clinical symptoms. METHODS: Sera were obtained from 193 retinopathy patients who presented with clinical symptoms resembling PR or autoimmune retinopathy (AR), including sudden painless loss of vision, typically associated with visual field defects and photopsias, and abnormal rod and/or cone responses on the electroretinogram (ERG). Sera were tested for the presence of anti-retinal autoantibodies by Western blot analysis using proteins extracted from human retina and by immunohistochemistry. Autoantibody titers against recoverin and enolase were measured by ELISA. RESULTS: We identified a higher prevalence of anti-retinal autoantibodies in retinopathy patients. Ninety-one patients' sera (47.1%) showed autoantibodies of various specificities with a higher incidence of antibodies present in retinopathy patients diagnosed with cancer (33/52; 63.5%; p = 0.009) than in retinopathy patients without cancer (58/141; 41.1%). The average age of PR patients was 62.0 years, and that of AR patients was 55.9 years. Autoantibodies against recoverin (p23) were only present in the sera of PR patients, autoantibodies against unknown p35 were more common in patients with AR, while anti-enolase (anti-p46) autoantibodies were nearly equally distributed in the sera of patients with PR and those with AR. In the seropositive patients, the autoantibodies persisted over a long period of time – from months to years. A rebound in anti-recoverin autoantibody titer was found to be associated with exacerbations in visual symptoms but not in the recurrence of cancer. When compared to sera from healthy subjects, autoantibodies against retinal proteins from both groups of patients were cytotoxic to retinal cells, indicating their pathogenic potential. CONCLUSIONS: These studies showed that patients with sudden or subacute, unexplained loss of vision of retinal origin have anti-retinal antibodies in a broad range of specificity and indicate the need for autoantibody screening. Follow-up tests of antibody levels may be useful as a biomarker of disease activity associated with worsening of vision. Moreover, the heterogeneity in autoantibody specificity may explain the variation and complexity of clinical symptoms in retinopathy patients

    Dexamethasone Intravitreal Implant as Adjunctive Therapy to Ranibizumab in Neovascular Age-Related Macular Degeneration: A Multicenter Randomized Controlled Trial

    Get PDF
    Purpose: To evaluate the efficacy and safety of dexamethasone intravitreal implant 0.7 mg (DEX) as adjunctive therapy to ranibizumab in neovascular age-related macular degeneration (nvAMD). Procedures: This was a 6-month, single-masked, multicenter study. Patients were randomized to DEX implant (n = 123) or sham procedure (n = 120) and received 2 protocol-mandated intravitreal ranibizumab injections. The main outcome measure was injection-free interval to first as-needed ranibizumab injection. Results: DEX increased the injection-free interval versus sham (50th percentile, 34 vs. 29 days; 75th percentile, 85 vs. 56 days; p = 0.016). 8.3% of DEX versus 2.5% of sham-treated patients did not require rescue ranibizumab (p = 0.048). Visual acuity and retinal thickness outcomes were similar in DEX and sham-treated patients. Only reports of conjunctival hemorrhage (18.2 vs. 8.5%) and intraocular pressure elevation (13.2 vs. 4.2%) were significantly different in the DEX versus the sham treatment groups. Conclusion: DEX reduced the need for adjunctive ranibizumab treatment and showed acceptable tolerability in nvAMD patients

    A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye

    Get PDF
    We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders

    Shout! Wherever You May Be I Am An American

    Get PDF
    No cover arthttps://scholarsjunction.msstate.edu/cht-sheet-music/10272/thumbnail.jp

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice

    Get PDF
    Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain

    true

    Get PDF
    Photograph of Morton Downeyhttps://scholarsjunction.msstate.edu/cht-sheet-music/11069/thumbnail.jp

    Heaven Help This Heart Of Mine

    Get PDF
    Woman in dress with heart below her dresshttps://scholarsjunction.msstate.edu/cht-sheet-music/12293/thumbnail.jp

    Take Me Back to My Boots and Saddle

    Get PDF
    Orange and purple with photograph of Lou Bring and drawing of man on bucking broncohttps://scholarsjunction.msstate.edu/cht-sheet-music/13546/thumbnail.jp
    corecore