1,417 research outputs found
Analytic Examples, Measurement Models and Classical Limit of Quantum Backflow
We investigate the backflow effect in elementary quantum mechanics - the
phenomenon in which a state consisting entirely of positive momenta may have
negative current and the probability flows in the opposite direction to the
momentum. We compute the current and flux for states consisting of
superpositions of gaussian wave packets. These are experimentally realizable
but the amount of backflow is small. Inspired by the numerical results of Penz
et al (M.Penz, G.Gr\"ubl, S.Kreidl and P.Wagner, J.Phys. A39, 423 (2006)), we
find two non-trivial wave functions whose current at any time may be computed
analytically and which have periods of significant backflow, in one case with a
backwards flux equal to about 70 percent of the maximum possible backflow, a
dimensionless number , discovered by Bracken and Melloy
(A.J.Bracken and G.F.Melloy, J.Phys. A27, 2197 (1994)). This number has the
unusual property of being independent of (and also of all other
parameters of the model), despite corresponding to an obviously
quantum-mechanical effect, and we shed some light on this surprising property
by considering the classical limit of backflow. We discuss some specific
measurement models in which backflow may be identified in certain measurable
probabilities.Comment: 33 pages, 14 figures. Minor revisions. Published versio
Trends in Kaposi's sarcoma-associated Herpesvirus antibodies prior to the development of HIV-associated Kaposi's sarcoma: a nested case-control study
HIV-associated Kaposi's sarcoma (KS) is a public health challenge in sub-Saharan Africa since both the causative agent, Kaposi's sarcoma associated-herpesvirus (KSHV), and the major risk factor, HIV, are prevalent. In a nested case-control study within a long-standing clinical cohort in rural Uganda, we used stored sera to examine the evolution of antibody titres against the KSHV antigens K8.1 and latency-associated nuclear antigen (LANA) among 30 HIV-infected subjects who subsequently developed HIV-related KS (cases) and among 108 matched HIV/KSHV coinfected controls who did not develop KS. Throughout the 6 years prior to diagnosis, antibody titres to K8.1 and LANA were significantly higher among cases than controls (p < 0.0001), and titres increased prior to diagnosis in the cases. K8.1 titres differed more between KS cases and controls, compared to LANA titres. These differences in titre between cases and controls suggest a role for lytic viral replication in the pathogenesis of HIV-related KS in this setting
Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus
RecG is a DNA translocase encoded by most species of bacteria. The Escherichia coli protein targets branched DNA substrates and drives the unwinding and rewinding of DNA strands. Its ability to remodel replication forks and to genetically interact with PriA protein have led to the idea that it plays an important role in securing faithful genome duplication. Here we report that RecG co-localises with sites of DNA replication and identify conserved arginine and tryptophan residues near its C-terminus that are needed for this localisation. We establish that the extreme C-terminus, which is not resolved in the crystal structure, is vital for DNA unwinding but not for DNA binding. Substituting an alanine for a highly conserved tyrosine near the very end results in a substantial reduction in the ability to unwind replication fork and Holliday junction structures but has no effect on substrate affinity. Deleting or substituting the terminal alanine causes an even greater reduction in unwinding activity, which is somewhat surprising as this residue is not uniformly present in closely related RecG proteins. More significantly, the extreme C-terminal mutations have little effect on localisation. Mutations that do prevent localisation result in only a slight reduction in the capacity for DNA repair. © 2014 The Author(s)
Combined SEM-FIB-SPM-TOF-EDX-EBSD as a Multifunctional Tool
Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
High purity nanoparticles exceed stoichiometry limits in rebox chemistry: the nano way to cleaner water
A potentially cheaper and more effective way of cleaning wastewater has been discovered by scientists
at Nazarbayev University and the University of Brighton researching nanotechnology [1]. It is well
established that when particles are reduced to the nanoscale unexpected effects occur. Silver, for example,
interacts with mercury ions in a fixed ratio of atoms (stoichiometry), typically 2:1, which presents a limit
that has never been exceeded. In this project we used an alternative chemical procedure based on modified
quartz sand to immobilise silver nanoparticles (NPs) with control over their size. We found that when the
size of the silver NPs decreased below 35 nm the amount of mercury ions reacting with silver increased
beyond the long-held limit and rose to a maximum of 1:1.2 for 10 nm sized silver
Network Connections in REIT Markets
Relationships play a central role across the spectrum of real estate transactions. Whether negotiating prices, securing funding, or acquiring permits, knowing the right people provides multiple channels to facilitate deal making. To better understand the role of relationships in real estate markets, we examine how the connectedness of REIT directors is associated with deal making, growth, and profitability. We find strong evidence that REIT connections are positively associated with both deal making and accounting based measures of profitability, however, those relations do not translate into better market returns or higher valuations. One explanation of these somewhat contradictory results is that connections also increase firm risk. Preliminary support for this conjecture is found through our examination of each firm’s implied cost of equity capital. Specifically, we find increasing connectedness is associated with a higher cost of equity capital. Thus, connections appear to offer both advantages and disadvantages to REIT managers and shareholders
High purity nanoparticles exceed stoichiometry limits in rebox chemistry: the nano way to cleaner water
A potentially cheaper and more effective way of cleaning wastewater has been discovered by scientists
at Nazarbayev University and the University of Brighton researching nanotechnology [1]. It is well
established that when particles are reduced to the nanoscale unexpected effects occur. Silver, for example,
interacts with mercury ions in a fixed ratio of atoms (stoichiometry), typically 2:1, which presents a limit
that has never been exceeded. In this project we used an alternative chemical procedure based on modified
quartz sand to immobilise silver nanoparticles (NPs) with control over their size. We found that when the
size of the silver NPs decreased below 35 nm the amount of mercury ions reacting with silver increased
beyond the long-held limit and rose to a maximum of 1:1.2 for 10 nm sized silver
Cost effectiveness of antimicrobial catheters in the intensive care unit: addressing uncertainty in the decision
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD 948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area
- …