42 research outputs found

    Impact of channelized flow on temperature distribution and fluid flow in restless calderas:Insight from Campi Flegrei caldera, Italy

    Get PDF
    Magmatic hydrothermal systems develop by the imposition of a magmatically derived heat flux upon a shallow groundwater system. As such their dynamics can be intermittently perturbed by changing conditions within the associated magmatic system. Understanding the nature of the coupling between the magmatic and groundwater systems is thus key to discriminating geophysical signals of magmatic unrest from purely hydrothermal ones.Using a series of numerical groundwater models run with TOUGH2, we simulate the coupled groundwater–magmatic system at Campi Flegrei caldera, with particular emphasis on the impact of permeability developed within local fault systems and the dynamics of the system during magmatic unrest. Simulation results suggest that faults can play an important role in controlling the dynamics of recharge and heat transport within the shallow hydrothermal reservoir. Results specifically highlight that contrasts in permeability between faults and surrounding rock impact local temperature gradients, with faults either acting as preferential routes for recharge or discharge of groundwater, depending on fault/caldera fill permeability contrast and the vertical extent of the fault. Simulations of magmatic unrest with a step-wise increase in basal heat flux suggest that periodic geophysical and chemical signals may stem from the interaction between the development of gas at depth and the recharge–discharge dynamics of the reservoir. These results highlight the potential for the dynamics of magmatic–hydrothermal systems to be significantly impacted by the presence and nature of local fault systems. Where dynamic groundwater systems are involved, it is thus important to understand the impact of such geological elements when interpreting monitoring data such as ground deformation, seismicity and gas emissions

    Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer

    Get PDF
    © 2016, The Author(s). In carbonate aquifers, dissolved organic carbon from the surface drives heterotrophic metabolism, generating CO2 in the subsurface. Although this has been a proposed mechanism for enhanced dissolution at the water table, respiration rates and their controlling factors have not been widely evaluated. This study investigates the composition and concentration of dissolved organic carbon (DOC) reaching the water table from different recharge pathways on a subtropical carbonate island using a combination of DOC concentration measurements, fluorescence and absorption characterisation. In addition, direct measurements of the microbial response to the differing water types were made. Interactions of rainfall with the vegetation, via throughfall and stemflow, increase the concentration of DOC. The highest DOC concentrations are associated with stemflow, overland recharge and dissolution hole waters which interact with bark lignin and exhibit strong terrestrial-derived characteristics. The groundwater samples exhibit the lowest concentrations of DOC and are comprised of refractory humic-like organic matter. The heterotrophic response seems to be controlled by the concentration of DOC in the sample. The terrestrially sourced humic-like matter in the stemflow and dissolution hole samples was highly labile, thus increasing the amount of biologically produced CO2 to drive dissolution. Based on the calculated respiration rates, microbial activity could enhance carbonate dissolution, increasing porosity generation by a maximum of 1%kyr−1 at the top of the freshwater lens

    Risk factors for delay in symptomatic presentation of leukaemia, lymphoma and myeloma

    Get PDF
    Background: UK policy aims to improve cancer outcomes by promoting early diagnosis, which for many haematological malignancies is particularly challenging as the pathways leading to diagnosis can be difficult and prolonged. Methods: A survey about symptoms was sent to patients in England with acute leukaemia, chronic lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML), myeloma and non-Hodgkin lymphoma (NHL). Symptoms and barriers to first help seeking were examined for each subtype, along with the relative risk of waiting >3 months’ time from symptom onset to first presentation to a doctor, controlling for age, sex and deprivation. Results: Of the 785 respondents, 654 (83.3%) reported symptoms; most commonly for NHL (95%) and least commonly for CLL (67.9%). Some symptoms were frequent across diseases while others were more disease-specific. Overall, 16% of patients (n=114) waited >3 months before presentation; most often in CML (24%) and least in acute leukaemia (9%). Significant risk factors for >3 months to presentation were: night sweats (particularly CLL and NHL), thirst, abdominal pain/discomfort, looking pale (particularly acute leukaemias), and extreme fatigue/tiredness (particularly CML and NHL); and not realising symptom(s) were serious. Conclusions: These findings demonstrate important differences by subtype, which should be considered in strategies promoting early presentation. Not realising the seriousness of some symptoms indicates a worrying lack of public awareness

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore