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(A) ABSTRACT 1 

Dolomitisation often plays a critical role in the pore network development of platform 2 

carbonates, with implications for reservoir quality distribution. Understanding both the 3 

hydrological system driving dolomitisation and the chemistry of the fluids involved is 4 

fundamental to constrain predictions of the geometry and the petrophysical properties of 5 

dolomite bodies. Here the role of secular variations in seawater Mg/Ca as a control on 6 

dolomitisation and early porosity modification was evaluated using 1D Reactive Transport 7 

Models (RTM) and fluids based on modern (aragonite sea), Mississippian and Aptian (calcite 8 

sea) seawaters. The sensitivity of dolomitisation to a range of extrinsic controls (brine 9 

salinity, temperature, fluid flow rate, and pCO2), and to intrinsic reactivity of the sediments 10 

(effective reactive surface area) was also explored. Simulations suggest faster calcite 11 

replacement by dolomite for seawaters with higher Mg/Ca, indicating dolomitisation 12 

potential is determined more by Mg/Ca rather than saturation index. Increasing evaporative 13 

concentration enhances reaction rate independent of the effect of enhanced density-driven 14 

fluid flux. In addition to brine composition, effective surface area of precursor sediments and 15 

temperature exert a critical control on replacement rate, whilst secular variations of pH and 16 

carbonate alkalinity associated with changes in pCO2 are only secondary controls. Above 17 

flow rates of 0.01 m/yr replacive dolomitisation is reaction- rather than flux-limited, 18 

favouring alteration of fine-grained carbonates and suggesting that preferential alteration of 19 

grainstone units is rare unless head gradients are low. Post-replacement dolomite cementation 20 

is flux dependent, and thus favoured in areas of high head gradient and high permeability 21 

sediments, and, contrarily to replacement, supersaturation is a more important driver than 22 

Mg/Ca. Whilst uncertainties remain regarding low-temperature dolomitisation kinetics, the 23 

capability of numerical simulations to decouple individual controls provides new insights 24 
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which can be used, in conjunction with traditional comparative sedimentology, to generate 1 

more rigorous conceptual models for individual reservoir settings. 2 

 3 

Keywords: dolomitisation, reactive transport modelling, reflux, seawater chemistry, Mg/Ca, 4 

secular fluctuations. 5 

  6 

(A) INTRODUCTION 7 

Characterization of the geometry of dolomite geobodies (and any associated dissolution, 8 

silicification, diagenetic evaporites and MVT deposits) and the resulting patterns of porosity 9 

and permeability is a key achievement both in reducing risk in resource assessment and 10 

optimising recovery. It is now widely accepted that the geometry and reservoir properties of 11 

the dolomite bodies depend on the hydrological system driving dolomitisation and also on the 12 

chemistry of the fluids (Morrow, 1982; Land, 1985; Warren, 2000; Machel, 2004).                                                     13 

Although dolomitising solutions can have multiple origins and compositions, there is a 14 

general agreement that seawater is the only abundant source of magnesium capable of 15 

causing massive dolomitisation (Land, 1985; Sun, 1994; Warren, 2000). Many of these 16 

dolomite reservoirs occur in subtidal carbonates associated with evaporitic tidal flat/lagoon 17 

environments and their origin appears to be related to reflux of fluids formed by solar-driven 18 

concentration of seawater (Adams & Rhodes, 1960; Fisher & Rodda, 1969; Montañez & 19 

Read, 1992; Sun, 1995; Rivers et al., 2012). Fluid flow is driven by the density contrast 20 

between the denser, evaporated seawater which develops over restricted areas of the platform 21 

top and the normal salinity seawater of the open areas of shelf and adjacent basin plus the 22 

interstitial pore water in the subtidal deposits underlying the evaporitic tidal flat/lagoonal 23 

deposits. There are also cases reporting dolomites formed by reflux of mesosaline brines and 24 
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not associated with the precipitation of evaporites, indicating that even a small density 1 

contrast may be enough to drive reflux (Simms, 1984; Whitaker & Smart, 1990; Melim & 2 

Scholle, 2002; Gabellone et al., 2014a).  3 

Within reflux systems mole-for-mole replacement of calcite by dolomite tends to generate an 4 

initial increase in porosity in the updip direction close to the brine source (Saller & 5 

Henderson, 1998). This is commonly associated with a significant increase in permeability, 6 

especially when lime mudstones and wackestones are replaced with sucrosic dolomite 7 

crystals (Dawans & Swart, 1988; Woody et al., 1996). However, continued flow of 8 

supersaturated fluids through the previously dolomitised rocks causes dolomite overgrowth 9 

and cementation of intercrystalline pores (“overdolomitisation”; Halley & Schmoker, 1983; 10 

Lucia, 2004) which may reduce permeability. On the other hand, the flow of undersaturated 11 

fluids, during either meteoric or burial diagenesis may be responsible for porosity increase in 12 

partially- to completely-dolomitised carbonates (Machel & Anderson, 1989; Mazzullo & 13 

Harris, 1992; Amthor et al., 1994; Wright & Harris, 2013). Reflux dolomitisation predicted to 14 

result in better reservoir properties in the more distal parts of the flow system where the 15 

brines become progressively less dolomite supersaturated (Lucia & Major, 1994; Saller et al., 16 

1994; Saller, 2004; Wahlman, 2010). However, this may be countered by porosity occluding 17 

evaporite precipitation which results from the release of calcium during replacement of 18 

calcite by dolomite in combination with the available sulphate in the brines (Machel, 1986; 19 

Leary & Vogt, 1987). 20 

The geochemical potential for dolomitisation is strongly influenced by the Mg/Ca of the 21 

refluxing fluids, which reflects the chemistry of source waters and the degree of evaporative 22 

concentration. In some instances, and where brines are sourced by groundwater rather than 23 

seawater, the Mg/Ca of the dolomitising fluids is also influenced by interaction with non-24 

carbonate basement rocks, as well as by the evaporative concentration (Logan, 1987; García 25 
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Del Cura et al., 2001). The chemical composition of seawater has changed through the 1 

Phanerozoic resulting in long-term fluctuation of the Mg/Ca ratio in phase with 100–200 My 2 

oscillations in sea-level, icehouse-greenhouse climates, and global volcanicity in relation to 3 

plate tectonics (Sandberg, 1983; Hardie, 1996). In addition to influencing the primary 4 

mineralogy of marine non-skeletal carbonates (aragonite, high-Mg calcite, low-Mg calcite), 5 

these fluctuations will also affect the dolomitisation potential of seawater-derived fluids 6 

(Steuber & Rauch, 2005). Some authors argue that, conversely, fluctuations in the mass of 7 

dolomite being formed influence the observed changes in seawater composition (Holland et 8 

al., 1996; Holland & Zimmerman, 2000; Arvidson et al., 2011), with enhanced rates of 9 

dolomitisation during periods when climatic and tectonic conditions favoured brine 10 

generation (Sun, 1994). 11 

In this paper, 1D numerical Reactive Transport Modelling (RTM) was used to explore the 12 

role of secular variations of seawater composition in controlling reflux diagenesis, including 13 

replacement dolomitisation and overdolomitisation, associated precipitation/dissolution of 14 

diagenetic sulphates, and implications for porosity modification. The dolomitising potential 15 

of brines formed during periods of aragonite and calcite seas was contrasted, based on 16 

evaporation of modern and Aptian seawaters (Mg/Ca of ~5 and ~1 respectively), and an 17 

intermediate fluid based on Mississippian seawater composition (Mg/Ca ~2). The sensitivity 18 

of the diagenetic system to salinity was explored, using brines ranging from mesosaline to 19 

hypersaline, generated by evaporative concentration of the three different Mg/Ca seawaters. 20 

This sensitivity to fluid composition is then contextualised by comparison with the impact of 21 

other extrinsic controls, such as temperature, pCO2 and fluid flux rate. Finally the importance 22 

of intrinsic properties of the sedimentary system was explored, evaluating the effects of 23 

sediment texture on effective reactive surface area (RSA). Thus reflux diagenesis expected in 24 
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fine-grained, reactive but low permeability sediments, was compared with more coarse-1 

grained sediments which may be less reactive but will likely experience higher fluid flux.   2 

 3 

(A) METHODS 4 

Reactive transport modelling (RTM) was performed using the numerical simulator 5 

TOUGHREACT (Xu et al., 2004), which is capable of coupling chemical reactions and 6 

multiphase fluid flow, heat and solute transport in chemically and physically heterogeneous 7 

geologic domains. Temporal and spatial changes in porosity are calculated from changes in 8 

mineral volume fractions due to mineral precipitation and dissolution, considering feedbacks 9 

from evolving porosity and derived permeability.  10 

The code has already been applied to simulate dolomitisation and associated diagenetic 11 

processes driven by geothermal convection, evaporative brine reflux and compactional flow 12 

in generic carbonate platforms (Wilson et al., 2001; Jones & Xiao, 2005; Whitaker & Xiao, 13 

2010; Al-Helal et al., 2012a, b) and specific case studies (Consonni et al., 2010). Here early 14 

shallow diagenesis driven by reflux of brines of different composition was simulated through 15 

sediments beneath the brine source, where the hydraulic drive has been demonstrated, by 16 

simulations of generic carbonate platforms, to be mostly vertical even for highly anisotropic 17 

systems (khorizontal/kvertical 10
2
-10

4
; Al-Helal et al., 2012b). 18 

The model is a 1D vertical column, with an area of 1 m
2
 and length of 10 m discretised into 19 

1000 cells each 1 cm in length. An initial homogeneous 40% porosity was specified 20 

throughout the column. Flow rate is externally specified and constant through time: thus 21 

although permeability changes can be calculated from porosity they do not affect the 22 

simulation results. 23 

All the simulations are isothermal, with the baseline having a temperature of 30 °C, and 24 

sensitivity to temperature was also investigated over the range of 20-40 °C. The model is 25 
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initially saturated with normal seawater (salinity of 35‰). In each simulation an evaporative 1 

brine of specified chemical composition was injected at the top of the column at a constant 2 

rate of 1 m/yr, with discharge at the bottom of the column. The flow rate is constrained by 3 

results of previous 2D simulations using comparable temperatures and salinities (Al-Helal et 4 

al., 2012b), but sensitivity was explored over a range from 0.01 to 2 m/yr.  5 

All simulations ran for 500 kyr using an automatic time stepping scheme dependent on the 6 

convergence behaviour of the chemical reaction system. For most of the simulations the 7 

specified initial mineralogy is 99% calcite and 1% “seed” dolomite, which provides 8 

nucleation sites, assuming prior stabilisation of primary high-Mg calcite and aragonite. The 9 

presence of small amounts of syndepositional dolomite is consistent with observations in 10 

modern dolomite-forming environments (Deffeyes et al., 1965; Illing et al., 1965; Shinn et 11 

al., 1965; Carballo et al., 1997; Mazzullo et al., 1987). The formulation of equations for 12 

kinetic reactions in TOUGHREACT requires specification of a starting fraction of the 13 

mineral for calculating initial effective surface area. Preliminary simulations (not shown here) 14 

using less than 1% of dolomite “seed” show a longer induction period, i.e. at very early times 15 

dolomitisation proceeds less rapidly. Dolomitisation was also simulated in sediments which 16 

are entirely aragonitic or contain an equal fraction of calcite and aragonite. Gypsum and 17 

anhydrite were specified as secondary minerals that could precipitate when fluids become 18 

supersaturated, but which were not present at the beginning of the simulations. 19 

Single cell batch simulations used a thermodynamic approach, whereby dolomite 20 

precipitation is solely controlled by the saturation state of the fluid and the fluid-rock system 21 

equilibrates within an individual model timestep. In the 1D simulations dolomite precipitation 22 

was modelled as a kinetic process, whereby dolomitisation rate is varied as a function of 23 

other model parameters. The kinetic rate constant for precipitation at 25 °C (4.58E-19 24 

mol/m
2
/s) and activation energy were extrapolated from the high-temperature (115-196 °C) 25 
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experiments of Arvidson & Mackenzie (1999), consistent with previous RTMs of 1 

dolomitisation (Jones & Xiao, 2005; Whitaker & Xiao, 2010; Al-Helal et al., 2012a, b). The 2 

kinetic expression for dolomite precipitation is given by: 3 

         
  

  

  
    

 

   
 
    

      (equation 1) 4 

where      is the reaction rate of dolomite;    is the specific reactive surface area;   is the 5 

activity quotient, and     is the equilibrium constant for ordered dolomite; A, the pre-6 

exponential factor, is 11.2 mol/cm
2
/s; Ea, the activation energy, is 1.335 x 10

5
 J/mol; R is the 7 

universal gas constant; T is the temperature (in Kelvin); and 2.26 is the reaction order 8 

(Arvidson & Mackenzie, 1999). Precipitation of dolomite was assumed to be the slowest 9 

diagenetic process modelled, and thus to limit the rate of calcite-aragonite dissolution, and 10 

gypsum-anhydrite precipitation where these reactions were thermodynamically favoured.  11 

The code uses effective reactive surface area (RSA) to initialise nucleation of kinetic 12 

minerals. In the baseline simulation an effective RSA for dolomite of 500 cm
2
/g, 13 

representative of small dolomite rhombs (50 μm diameter, based on geometric calculations) 14 

was specified. The sensitivity analysis tested the effect of varying dolomite RSA between a 15 

minimum of 100 cm
2
/g and a maximum of 10,000 cm

2
/g representing coarser (260 μm) and 16 

finer crystals (2.5 μm) respectively. RSA modifications due to diagenetic changes in texture 17 

are likely complex and are currently not incorporated in the simulations. 18 

When simulating a mixture of primary calcite and aragonite, rate constants were specified 19 

also for these minerals. Calcite and aragonite dissolution kinetics have been subject to 20 

extensive experimental investigation and are better constrained than reaction kinetics of 21 

dolomite; however some uncertainty still remains even within well buffered systems 22 

(Arvidson et al., 2003; Palandri & Kharaka, 2004). Moreover intrinsic rate variations in 23 

mineral dissolution are commonly up to 2.5 orders of magnitude (Lüttge et al., 2013). 24 

Therefore, dissolution rates ranging between 1.0E-5 and 1.0E-11 mol/m
2
/s have been tested 25 
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in this study. As for dolomite, RSA for calcite and aragonite was maintained equal to that of 1 

dolomite (500 cm
2
/g), which is equivalent to spherical grains of 44 μm in diameter (precursor 2 

sediments are thus equivalent to coarse silts), needles of ca. 2 m diameter, or larger but 3 

morphologically more complex grains.  4 

Nine primary and 11 secondary aqueous species were incorporated in the geochemical 5 

calculations (Table 1). Thermodynamic data for the aqueous species and the 5 minerals 6 

(dolomite, calcite, aragonite, gypsum, anhydrite) were taken from the EQ3/6 geochemical 7 

database (Wolery, 1992) with some substitutions incorporated to account for recent published 8 

revisions in thermodynamic properties of rock-forming minerals and aqueous species. Details 9 

on data sources and the list of chemical species for which thermodynamic parameters have 10 

been updated are given in Xu et al. (2005). The simulations presented here use the Pitzer ion-11 

interaction equation to calculate ionic activities, in contrast to most previous RTM studies 12 

(Wilson et al., 2001; Whitaker & Xiao, 2010; Al-Helal et al., 2012b), in which the Debye-13 

Hückel approach employed underestimates the diagenetic potential of dolomitising fluids 14 

(Al-Helal et al., 2012a).  15 

Simulations were performed using three different source seawaters: modern, Mississippian 16 

and Aptian, with Mg/Ca molar ratios of 5.1, 2.3, and 1.2 respectively (Table 2). The major 17 

ion composition of modern seawater was derived from Nordstrom et al. (1979), while that of 18 

Aptian seawater was calculated from the chemical composition of fluid inclusions in Aptian 19 

marine halite (Timofeeff et al., 2006).  Mississippian seawater composition was taken from 20 

Demicco et al. (2005), who used an inverse model that considered variable cycling rates of 21 

seawater through axial portions of mid-ocean ridges. Seawater paleo-pH and atmospheric 22 

pCO2 for the Mississippian and the Aptian (Table 2) were taken from Zeebe (2012), and they 23 

were used to calculate carbonate alkalinity using CO2SYS (Pierrot et al., 2006) with 24 

dissociation constants from Mehrbach et al. (1973) refit by Dickson & Millero (1987). The 25 
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effects of changes in atmospheric pCO2, leading to pH and carbonate alkalinity variations, 1 

were tested as part of the sensitivity analysis.  2 

The composition of refluxing brines was derived by simulating evaporation of the three 3 

different seawaters (modern, Mississippian, and Aptian) by removal of pure water. This 4 

generated one mesosaline brine (44‰) and four hypersaline brines of 65, 89, 120 and 200‰. 5 

The 89‰ Mississippian brine was chosen as baseline for the sensitivity analysis of 6 

temperature, fluid flow rate, pCO2, and effective RSA, because of its intermediate value of 7 

both Mg/Ca and salinity. 8 

 9 

(A) RESULTS 10 

(B) Seawater chemistry 11 

All three source seawaters used in the simulations (modern, Mississippian and Aptian) at 30 12 

°C are supersaturated with respect to calcite, aragonite and dolomite, and undersaturated with 13 

respect to gypsum and anhydrite. Compared with modern seawater, the degree of calcite 14 

supersaturation was slightly higher in the Aptian seawater, and slightly lower in the 15 

Mississippian seawater (Table 2). This reflects differences in absolute calcium concentration 16 

and pH determined by atmospheric pCO2.  However, the higher magnesium concentration of 17 

the modern seawater resulted in significantly greater dolomite supersaturation compared to 18 

both the Aptian and the Mississippian seawater.   19 

Evaporative concentration of each of the three seawaters to salinities up to 200‰ leads to a 20 

progressive increase in the degree of saturation with respect with all the considered carbonate 21 

minerals (Fig. 1), enhancing differences in saturation state between the solutions. This 22 

suggests that for a given degree of evaporation, dolomitisation would be most rapid during 23 

periods when the seawater composition was similar to modern, and slowest when Mg/Ca 24 

ratio and pH were lower. The degree of undersaturation with respect to gypsum and anhydrite 25 
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decreases during evaporation, reaching gypsum equilibrium at salinities of 189‰, 159‰ and 1 

188‰ for modern, Mississippian and Aptian  seawaters respectively.  2 

The diagenetic potential of these different fluids was first evaluated using closed system 3 

(batch) reactive transport simulations in which both calcite and dolomite were modelled as 4 

thermodynamic minerals. The total amount of dolomite that can be formed from 1 m
3
 of 5 

normal modern seawater is 3.53E-03 m
3
, while the same volume of Mississippian and Aptian 6 

normal seawaters would form 2.85E-03 and 2.66E-03 m
3
 of dolomite respectively (Fig. 2). 7 

Differences in dolomitisation potential thus directly reflect contrasts in Mg/Ca between 8 

fluids, rather than saturation index. The evaporative concentration of each of these seawaters 9 

enhances the dolomitisation potential in direct proportion to the extent of evaporation, prior 10 

to any precipitation of gypsum (Fig. 2). The diagenetic potential of the same fluids during 11 

reflux was then evaluated using simple 1D reactive transport models. 12 

Dolomitisation consumes Mg
2+

 and HCO3
- 
and releases Ca

2+
 in all simulations, thus reducing 13 

the degree of dolomite supersaturation along the fluid flow path. As a result, dolomitisation 14 

rate decreases with distance beneath the brine source as long as overlying sediments remain 15 

only partially dolomitised. However, for most simulations, differences in reaction rate along 16 

the short (10 m) length of the modelled flow path are minor (see results for sensitivity to fluid 17 

flow below). For clarity, unless there is a significant depth dependence, changes in 18 

mineralogy (volume fraction of rock) and porosity (total volume %) are displayed for a single 19 

cell close to the base of the column (-9.5 m). At this depth the influence of any seasonal 20 

changes in boundary conditions (temperature, fluid composition), which may affect real 21 

sediments at shallow depth, can be ignored.  22 

A 1 m/yr flux of modern seawater (Mg/Ca molar ratio of 5.1) at 30 °C resulted in complete 23 

replacement of precursor calcite within 111 kyr (Fig. 3B). This is accompanied by a porosity 24 

increase of up to 6% from an initial 40%, as expected from mineral density differences. 25 
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During replacement, a very minor amount of dolomite cement (<0.2 %) is also precipitated, 1 

limited by the relatively low Ca
2+

 concentration of the seawater. Following complete 2 

replacement, dolomite cementation accelerates, with precipitation of dolomite cement 3 

reducing porosity by 2.5% within 100 kyr of complete replacement.  By the end of the 4 

simulation (at 500 kyr) the dolomite cement represents some 12% of the total dolomite 5 

volume, and has reduced the total porosity to 37% from a maximum of 46%. Dolomitisation 6 

rate increases exponentially during the period of replacement as the reaction progresses from 7 

about 0.4%/kyr with 25% dolomite to 1.25%/kyr and 1.8%/kyr at 50% and 75% dolomite 8 

respectively. This exponential increase reflects increasing total surface area with dolomite 9 

precipitation (equation 1). As dolomitisation rate increases, the Mg
2+

 concentration of fluid at 10 

the base of the simulated column decreases and the Ca
2+

 concentration increases.  11 

Increasing brine concentration through evaporation of modern seawater enhances reaction 12 

rate independent of any increase in density-driven flux. The time to complete replacement of 13 

calcite by dolomite thus reduces with brine salinity (Figs 3 and 4A). Time is shown both in 14 

terms of absolute time and also time as a fraction of that required for complete replacement 15 

dolomitisation by normal modern seawater (1 in the top horizontal axis; Figs 3, 5, 7-10 and 16 

12). For modern seawater, evaporation to 44‰ results in a complete calcite replacement by 17 

86 kyr, while evaporation to 65‰ almost halves the time to complete replacement compared 18 

to normal seawater (Fig. 4A). Further concentration of source brines continues to accelerate 19 

replacement dolomitisation, although at a decreasing rate, so that for the most concentrated 20 

modern seawater simulated (200‰) all calcite is replaced within 24 kyr. The volume of 21 

dolomite cement precipitated also increases with increasing brine concentration, giving a net 22 

porosity reduction following complete replacement of calcite (Fig. 3D and E). The porosity 23 

loss 100 kyr after complete replacement shows a linear correlation with increasing brine 24 

salinity (Fig. 4B). Release of Ca
2+

 by replacement dolomitisation drives gypsum precipitation 25 
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from brines of 200‰ salinity, further occluding porosity (Fig. 3D and F). The gypsum 1 

reaches a maximum of 25% of the total rock volume by 24 kyr, but once calcite replacement 2 

is complete the reduction in Ca
2+

 driven by dolomite cementation leads to dissolution of the 3 

gypsum.  4 

Reflux of brines formed by evaporation of Mississippian seawater (Mg/Ca molar ratio of 2.3) 5 

leads to synchronous precipitation of dolomite cement and replacement of calcite by dolomite 6 

(Fig. 5). During replacement there is initially a minor net porosity reduction and then porosity 7 

enhancement as replacement dolomitisation accelerates (50-0% calcite), followed by 8 

reduction in porosity by dolomite cementation. For Mississippian seawater complete 9 

replacement requires 463 kyr, although increasing brine concentration increases reaction rates 10 

and lowers the time to complete dolomitisation (Figs 4A and 5A). However, the rate of 11 

replacement is much slower than seen in the simulations of modern brines (Fig. 4A). 12 

Following complete replacement, the rate of porosity occlusion by dolomite cementation is 13 

also slower than that for modern brines (Fig. 4B). As with modern seawater, concentration of 14 

Mississippian seawater to 200‰ leads to gypsum precipitation during replacement 15 

dolomitisation (Fig. 5F). However, because of the higher calcium concentration of the 200‰ 16 

Mississippian brine, the mass of gypsum precipitated is sufficient to reduce porosity to 1% 17 

over the 110 kyr required for complete replacement dolomitisation (not shown, see Fig. S1 in 18 

the online supporting information). Further dolomitisation is limited by the rapid flow rate 19 

that results from this reduction in porosity.  20 

Neither Aptian seawater (Mg/Ca molar ratio of 1.2) nor any of the brines generated from 21 

evaporation of Aptian seawater completely replace calcite within 500 kyr (Fig. 5, see also 22 

Fig. S2 in the online supporting information). Replacement dolomitisation is accompanied by 23 

calcite precipitation, which prohibits discrimination of replacement and cement dolomite 24 

volumes. The system is characterised by a net reduction in porosity ranging from 7 to 17% 25 
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for fluids of 35 to 120‰ at 500 kyr (Fig. 5D). For the 200‰ brine, this gradual reduction in 1 

porosity is augmented by precipitation of gypsum, which reaches almost 30% of the total 2 

rock volume and eliminates porosity by 500 kyr (Fig. 5F, see also Fig. S2 in the online 3 

supporting information). 4 

 5 

(B) Sensitivity to initial carbonate mineralogy 6 

Aragonite seas are characterized by abiotic carbonate precipitates of aragonite and high-Mg 7 

calcite. In contrast, calcite seas are characterized by abiotic precipitations of low-Mg calcite. 8 

Based on the Mg/Ca molar ratio, modern seawater is considered an aragonite sea, while the 9 

Aptian seawater is a calcite sea (Sandberg, 1983; Hardie, 1996). The Mississippian seawater, 10 

with Mg/Ca ~ 2, is at the threshold defined by Sandberg (1983) between a calcite and an 11 

aragonite sea. The influence of the precursor mineralogy on reflux dolomitisation was 12 

evaluated by simulations with an initial calcium carbonate composed entirely of aragonite, 13 

and mixed calcite-aragonite precursor allowing aragonite stabilisation to calcite as well as 14 

dolomitisation, for a range of brines (<200‰) derived from both modern and Mississippian 15 

seawaters.  16 

In monomineralic systems, dolomite replaces aragonite faster than it replaces calcite 17 

irrespective of fluid composition (Fig. 6), reflecting a lower degree of supersaturation with 18 

respect to aragonite as compared to calcite (Fig. 1). Aragonite is replaced 2.4 ± 0.1 (mean ± 1 19 

standard deviation) times quicker than calcite in simulations with modern fluids ranging from 20 

normal seawater (35‰) to 200‰ salinity (Fig. 6A), and 3.6 ± 0.1 times quicker than calcite 21 

in simulations with Mississippian brines from 35‰ to 120‰ salinity (excluding the 22 

Mississippian 200‰ brine; Fig. 6B). Following complete replacement of aragonite the rate of 23 

dolomite cementation is almost identical to that of calcite (results not shown).  24 
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To investigate the behaviour of a mixed CaCO3 mineralogy system, Mississippian brine of 1 

89‰ salinity was injected into the 1D model with an equal initial volume fraction of 2 

aragonite and calcite and 1% “seed” dolomite. Calcite and aragonite dissolution was 3 

modelled in this simulation as a kinetic process, and the sensitivity to different rate constants 4 

was also explored. Whilst sensitivity to different RSA for calcite and aragonite was not 5 

explicitly tested, increasing RSA of both minerals by one order of magnitude would give the 6 

same result as increasing both calcite and aragonite rate constants by one order of magnitude. 7 

Initially aragonite is replaced by calcite within 10 kyr for CaCO3 rate constants ranging from 8 

1.0E-5 to 1.0E-9 mol/m
2
/s (Fig. 7). This is significantly faster than observations from the 9 

rock record would suggest (Walter & Burton, 1990). Once all the aragonite has been 10 

replaced, dolomite starts to replace calcite. Using lower rate constants than those obtained 11 

from laboratory experiments (e.g. 1.0E-10 mol/m
2
/s), the aragonite remains in the system and 12 

is progressively replaced by both calcite and dolomite. All aragonite is lost within 54 kyr, 13 

after which calcite starts to be replaced by dolomite and replacement is complete by 228 kyr 14 

(Fig. 7). With the lowest used rate constant (1.0E-11 mol/m
2
/s), calcite does not precipitate 15 

and dolomite replaces first aragonite and then calcite (Fig. 7).  16 

 17 

(B) Sensitivity to temperature and pCO2  18 

The sensitivity of the shallow reflux system to temperature and pCO2 was explored for the 19 

Mississippian brine of 89‰ salinity. Although over the simulated range from 20 to 40 °C 20 

both calcite and dolomite exhibit retrograde solubility, the strong temperature dependence of 21 

the rate of dolomitisation (equation 1) is reflected in a marked increase in the rate of both 22 

calcite replacement and dolomite cementation with temperature (Fig. 8). At 20 °C, complete 23 

replacement of calcite requires an estimated 537 kyr, and simultaneous dolomite cementation 24 

gives very slow porosity reduction. In contrast, at 40 °C complete replacement occurs within 25 
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55 kyr (three times the rate at 30 °C), and in the following 100 kyr, dolomite cement 1 

precipitation reduces porosity by some 11%.  2 

Secular variations in atmospheric pCO2 are reflected in differences in the pH and carbonate 3 

alkalinity of seawater (Foster, 2008; Zeebe, 2012), thus influencing carbonate diagenesis. 4 

Additionally, CO2 production by bacteria and release from roots is known to elevate the 5 

pCO2 of shallow pore waters by as much as 2 orders of magnitude  compared with 6 

atmospheric values (Morse et al., 1987). The  Mississippian brine (89‰) was equilibrated 7 

with different pCO2 values, from the present day atmospheric concentration of 350 to a 8 

maximum of 30,000 ppmv (reported in modern pore waters in shallow water sediments in the 9 

Bahamas and resulting from biogenic processes; Morse et al., 1985). Despite reducing the 10 

dolomite saturation index (from +3.90 at atmospheric CO2 to +2.48 at the highest pCO2), 11 

there are only minor changes in the rate of dolomite replacement because the kinetic control 12 

dominates. In the simulation with 30,000 ppmv CO2, complete replacement occurs within 13 

154 kyr, only 11 kyr faster than the baseline (5,600 ppmv CO2) and 27 kyr faster than the 14 

simulation with 350 ppmv CO2 (Fig. 9). Equilibration with 30,000 ppmv CO2, increases 15 

porosity from an initial value of 40% to 50% during calcite replacement, and then decreases 16 

by ~ 4% within the next 100 kyr due to dolomite cement precipitation (Fig. 9). In contrast, at 17 

low pCO2 (350 and 1000 ppmv), prior to a period of rapid replacement, there is a systematic 18 

reduction of porosity due to precipitation of both dolomite and calcite (Fig. 9). After 19 

complete calcite replacement, porosity is further reduced by precipitation of dolomite cement 20 

down to 18% at 500 kyr at 350 ppmv CO2, compared to 37% at 30,000 ppmv CO2.  21 

 22 

(B) Sensitivity to RSA and fluid flux  23 

The extent to which the reactivity of the sediments influences the rate of dolomitisation 24 

during reflux was evaluated by varying the RSA. The baseline simulation was reflux of 89‰ 25 
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Mississippian brine through sediments with an RSA of 500 cm
2
/g, representative of dolomite 1 

rhombs of 50 μm diameter. In simulations employing lower RSA values, corresponding to 2 

coarser dolomite rhombs, the rate of replacement is slower (Fig. 10). Doubling the crystal 3 

size (halving the RSA) doubles the time to complete replacement. With an RSA of 100 cm
2
/g 4 

(260 μm rhombs) only 18% dolomite is formed after 500 kyr. At such a low dolomitisation 5 

rate, calcite also precipitates, reducing porosity by 13% over 500 kyr. Following complete 6 

replacement of calcite, the rate of dolomite cementation also increases with RSA (Fig. 10D). 7 

Fluid flux in natural systems will vary in a complex manner, not only with the gradient in 8 

effective head, but also the permeability of the sediments, which will evolve during 9 

diagenesis. To isolate this control, a time-invariant fluid flow rate was specified, with no 10 

feedback from changing rock properties during the simulation. Simulations suggest that at 11 

flow rates ≥0.5 m/yr the supply of Mg
2+

 does not limit reaction rates in the upper 10 m of 12 

sediment affected by reflux of 89‰ Mississippian  brine (Fig. 11). In contrast, at lower flow 13 

rates the longer residence time of the fluids allows more rapid shallow dolomitisation, and 14 

thus rates in the lower part of the column are reduced due to Mg
2+

 depletion in fluids during 15 

shallower dolomitisation (Fig. 11). The rate of dolomite cementation and associated porosity 16 

loss scale directly with flow rate (Fig. 12). As a consequence, the sediment in the lower part 17 

of the column retains the porosity formed during replacement (8% for fluxes of ≤0.1 m/yr) 18 

even after 500 kyr of brine reflux (Fig. 12E). The absence of dolomite cementation with these 19 

low fluid fluxes is due to the consumption of most of the available Mg
2+

 in the first few 20 

centimetres of the flow path, where dolomite cement occludes almost completely the pore 21 

space.  22 

 23 

(A) DISCUSSION 24 

(B) Seawater chemistry 25 
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The main objective of this study was to evaluate how secular variations in seawater 1 

composition (specifically the changes in Mg/Ca molar ratio) may have affected 2 

dolomitisation and other associated diagenetic reactions in shallow reflux systems. Results 3 

from the 1D reactive transport modelling simulations show that Mg/Ca ratios >2.3 (modern 4 

and Mississippian seawaters) have the potential to replace calcite with dolomite and also 5 

precipitate dolomite cement within a few hundred thousand years. This timescale is 6 

consistent with results of previous RTM studies of reflux using modern brines (Jones & Xiao, 7 

2005; Al-Helal et al., 2012b). Replacement by brines generated from modern seawater 8 

(Mg/Ca = 5.1) is 4 ± 0.1 times more rapid than replacement by brines from Mississippian 9 

seawater (Mg/Ca = 2.3). Low Mg/Ca (1.2) Aptian seawater, despite being supersaturated in 10 

respect with dolomite, shows only limited dolomitisation potential. Rather, reflux of low 11 

Mg/Ca seawater and derived brines leads to precipitation of calcite, because the very low 12 

dolomitisation rate does not reduce the concentration of Ca
2+

 in the continuously supplied 13 

calcite supersaturated brines.  Examples of Cretaceous calcite cements simultaneous to brine 14 

reflux dolomites are not known. Occurrence of synchronous dolomite and calcite cements has 15 

been reported instead in a few Cenozoic carbonates in meteoric-marine mixing zones, where 16 

dilution with meteoric water lowers Mg/Ca (Humphrey, 2000; Swart & Melim, 2000; Csoma 17 

et al., 2006). Dolomite and low-Mg calcite, in these cases, form at the same time following 18 

dissolution of the metastable aragonite and high-Mg calcite (Swart & Melim, 2000). Some 19 

models from this study, using a mixture of aragonite and calcite as precursor sediments and 20 

low reaction rates for these minerals, agree with these observations and show simultaneous 21 

replacement of aragonite by calcite and dolomite.  22 

The models predict an increase in porosity during replacement of calcite by dolomite based 23 

on mineral density differences. However, the continued flux of dolomite supersaturated fluids 24 

after complete replacement causes precipitation of dolomite cement that occludes both 25 
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primary porosity and porosity generated by replacement dolomitisation. For Mississippian 1 

brines cementation by dolomite is simultaneous with replacement. This overdolomitisation 2 

has been reported proximal to paleo-brine pools in a number of studies of reflux dolomites 3 

(Lucia & Major, 1994; Saller & Henderson, 1998; Wahlman, 2010). Previous RTM studies 4 

also predicted the precipitation of dolomite cements proximal to the brine source, although 5 

this required either high fluid flux, high temperatures or long (several million years) time 6 

periods (Jones & Xiao, 2005; Al-Helal et al., 2012b).  7 

A constant fluid flux was specified in the simple models of this study, and the outcome of a 8 

diagenetic increase in porosity is thus longer fluid residence times. In these simulations, this 9 

effect will enhance rates of replacement of calcite by dolomite, and the rate of dolomite 10 

cementation may also be increased by the longer residence times of diagenetic fluids. At 11 

these relatively low temperatures the rate of replacement dolomitisation is limited by kinetics 12 

rather than Mg
2+

 flux, as seen by the relatively low sensitivity to flux (Fig. 12). The 13 

simulations of replacement dolomitisation are thus unlikely to be significantly affected by 14 

ignoring the feedback between porosity, permeability and flux. However, at low porosity the 15 

1D models of this study may underestimate the rate of dolomite cementation at very shallow 16 

depth beneath the brine pool and overestimate it at greater depth.    17 

In natural systems diagenetic alteration of permeability would likely alter the distribution of 18 

fluid flux, enhancing reaction rates in more permeable areas and limiting those in less 19 

permeable regions. The significance of these effects is demonstrated by 2D simulations of 20 

Jones & Xiao (2005) which specify a random initial permeability distribution and show the 21 

formation of pronounced perturbations in the geometry of the dolomite front (dolomite 22 

fingers) for an externally specified brine injection rate. More recent 2D simulations of 23 

sediments with depositional textural variations show that permeability alteration changes total 24 

fluid flux in response to a specified density gradient, in addition to redistributing diagenetic 25 
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alteration (Gabellone et al., 2014b). The evolution of permeability resulting from 1 

dolomitisation appears to be strongly dependent on both depositional and diagenetic texture, 2 

and these controls are currently not fully understood (Woody et al., 1996; Gregg, 2004). 3 

There is the need to focus future research on textural changes resulting from dolomitisation 4 

and consequent permeability modification. 5 

For each of the three seawaters examined, evaporative concentration enhances dolomite 6 

supersaturation and thus the rate of replacement dolomitisation, independent of the effect of 7 

enhanced density-driven fluid flux. This result agrees with previous models of brine reflux 8 

dolomitisation using modern brines with different salinity in a generic 2D carbonate platform 9 

(Jones & Xiao, 2005). The 1D simulations suggest that for both modern and Mississippian 10 

seawaters the time to replace all calcite is inversely proportional to salinity, where the 11 

exponent of the power law is higher for the more Mg-rich modern waters (Fig. 4A). The rate 12 

of dolomite cementation also increases with brine salinity. However, evaporative 13 

concentration of brines derived from Mississippian seawater beyond 159‰ results in 14 

supersaturation with respect to gypsum; gypsum precipitation rapidly occludes porosity and 15 

inhibits further dolomitisation. Previous RTM studies of modern brine reflux show porosity 16 

occlusion by precipitation of anhydrite downstream of the zone of dolomitisation, and 17 

progressive anhydrite dissolution and reprecipitation ahead of the advancing dolomite front 18 

due to continued reflux (Jones & Xiao, 2005; Al-Helal et al., 2012b). Diagenetic evaporites 19 

in association with brine reflux dolomites have been reported in several case studies (Leary & 20 

Vogt, 1987; Cantrell et al. 2004; Ehrenberg, 2006; Ehrenberg et al., 2006; Rahimpour-Bonab 21 

et al. 2010). These have been explained by the release of calcium during dolomitisation 22 

which reacts with the available sulphate in the brines to precipitate gypsum and anhydrite 23 

(Machel, 1986; Leary & Vogt, 1987). Anhydrite, which is usually formed by stabilisation of 24 

gypsum, commonly occurs as pore-filling cement in nodules or patches, and can negatively 25 
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impact reservoir quality (Ehrenberg, 2006). The spatial distribution of evaporite cements 1 

(evenly or patchy) critically affect porosity-permeability relationships. More evenly 2 

distributed anhydrite cements will tend to reduce pore-throat size, porosity, and permeability, 3 

whilst patchy anhydrite distribution will reduce porosity without significantly altering pore-4 

throat size and reducing permeability only slightly (Lucia, 1999).  5 

The rate of simulated replacive dolomite formation from any given fluid (below gypsum 6 

saturation) increases exponentially driven by the increasing dolomite abundance:  7 

Dolt = Dol0 e 
(xt)        

(equation 2) 8 

where Dolt is the dolomite volume fraction at time t, Dol0  is the initial (“seed”) dolomite 9 

volume fraction, and time t is in kyr. For any given source seawater, the value of the 10 

exponent x is determined directly by the degree of evaporative concentration (represented by 11 

the salinity of the brine in Fig. 13A). Differences between Mg/Ca of the source seawater 12 

define the relationship between the gradient a of the relationship between exponent x and 13 

brine salinity (Fig. 13B).  14 

Based on the exponential form of this relationship (equation 2), beds where dolomitisation 15 

occurs at a higher initial rate would be anticipated to continue to dolomitise with increasingly 16 

rapidity, reflecting the increasing dolomite total reactive surface area (equation 1). This 17 

positive feedback would favour the development of stacked sequences in which limestone 18 

beds that have been completely replaced alternate with those where dolomite abundance 19 

remains low, rather than the development of thick partially dolomitised sequences. This 20 

prediction accords with the fossil record where reports of partial dolomitisation generally 21 

refer to alternation of beds that are largely or completely dolomitised with beds where 22 

dolomite is rare or sparse, rather than extensive sequences that are partially dolomitised 23 

(Montañez & Read, 1992; Garcia-Fresca et al., 2009; Saller & Dickson, 2011; Iannace et al., 24 

2014; Haas et al., 2015). The exponent x in equation 2 is controlled by both Mg/Ca and 25 
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salinity, suggesting that the propensity for interbedded limestones and dolomite will be 1 

greater for where diagenetic fluids are high salinity brines, especially where these brines 2 

formed from seawaters with high Mg/Ca. However, the simple models of this study do not 3 

consider the dynamic nature of shallow water carbonate sedimentation, in which eustatic sea 4 

level fluctuations control both sediment accumulation and synsedimentary diagenesis. Thus, 5 

sequences of alternating dolomitised and undolomitised beds could also reflect alternation of 6 

platform-top brine composition during progradation-retrogradation cycles (Montañez & 7 

Read, 1992; Rameil, 2008). Coupling of sedimentary models and RTMs allowes a more 8 

accurate evaluation of the evolution of reflux dolomitisation in a sequence stratigraphic 9 

context, by employing temporally evolving platform geometry and boundary conditions 10 

(Palmer et al., 2014; Frazer et al., 2015).  11 

Results from this study suggest that, based only on the geochemical composition of seawater, 12 

larger volumes of dolomite would be expected in reflux systems developed at times of 13 

aragonite seas (high Mg/Ca) than in comparable systems during periods of calcite seas (low 14 

Mg/Ca). High temperature laboratory experiments have indeed shown increased rate of 15 

dolomitisation with increasing Mg/Ca of the solution (Gaines, 1980; Sibley et al., 1994; 16 

Lumsden et al., 1995; Kaczmarek & Sibley, 2011).  17 

Equation 2 was combined with the secular variations in seawater Mg/Ca from Hardie (1996; 18 

Fig. 14A) to calculate the changes through time of the abundance of replacive dolomite that 19 

would form over 100 kyr. These changes are illustrated for normal marine seawater (35‰) 20 

and two evaporative brines (89 and 120‰), assuming 1% dolomite “seed” and 40% initial 21 

porosity (Fig. 14B). The resulting predicted changes in potential dolomite abundance clearly 22 

reflect the secular changes in Mg/Ca, but the rate of change in predicted dolomitisation rate 23 

over time is enhanced compared to the Mg/Ca changes because of the non-linear relationship 24 

between dolomitisation rate and Mg/Ca. This effect is even more marked for the high salinity 25 
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brines than for normal seawater, suggesting that for high salinity brines formed during 1 

periods of high Mg/Ca the rates of dolomitisation would be very fast (complete calcite 2 

replacement in less than 100 kyr). However, the comparison of the calculated dolomite rates 3 

(Fig. 14B) with the observed dolomite abundance in the geologic record (Given & Wilkinson, 4 

1987; Fig. 14C) clearly shows a lack of correlation, suggesting that controls other than the 5 

geochemical potential of the fluids exert a stronger effect on secular variations in 6 

dolomitisation. 7 

The geologic record does contain numerous examples of reflux dolomites formed during 8 

calcite seas, for instance the Early-Middle Cretaceous (Fisher & Rodda, 1969; Sun, 1995; 9 

Rameil, 2008; Vandeginste et al., 2013; Iannace et al., 2014). Reflux dolomites have been 10 

documented as well in the Mississippian (Sun, 1995; Sonnenfeld, 1996; Al-Aasm & Packard, 11 

2008; Rott & Qing, 2013), which is a period when chemistry was shifting from calcite to 12 

aragonite sea. The geologic record also contains examples of extensive carbonate deposits 13 

formed in aragonite seas that do not contain large amounts of dolomite. Compared to the rest 14 

of the Phanerozoic, the Cenozoic is a period of time with lesser amounts of dolomite (Given 15 

& Wilkinson, 1987). Large volumes of dolomite in modern reflux settings (aragonite sea) are 16 

also rare (Kocurko, 1979; Lucia & Major, 1994; Rivers et al., 2012). These apparent 17 

paradoxes arise because there are multiple controls on dolomitisation in addition to fluid 18 

chemistry. Some of these other parameters, most importantly eustatic sea-level and 19 

temperature, also show secular variations. However, their effects on dolomitisation are 20 

inversely related to those of the associated change in seawater chemistry. Greenhouse periods 21 

such as the Early Cretaceous are characterised by not only calcite seas (low Mg/Ca), but also 22 

higher global temperature which is kinetically favourable for dolomitisation. The high sea-23 

level resulting from thermal expansion, in association with low amplitude eustatic variations, 24 

would also favour the development of extensive shallow-water carbonate platforms and 25 
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sustained brine reflux. Recent studies of magnesium isotopes in the Cenozoic (Pogge von 1 

Strandmann et al., 2014) link the rapid decline in dolomitisation in the early-mid Oligocene 2 

and present day to global cooling. Finally, the relationship between periods of reduced 3 

atmospheric/ocean oxygen levels and increased dolomite abundance was suggested by Burns 4 

et al. (2000) to reflect abundance of microbial sulphate reduction, with increased nucleation 5 

sites for dolomite formation as a result of microbial dolomitisation. These kinetic controls 6 

may be key parameters given the relatively slow initiation period for dolomitisation (Sibley et 7 

al., 1987; Kaczmarek & Sibley, 2011).  8 

Similarly, the lack of dolomitisation in the recent may be associated with icehouse sea-level 9 

fluctuations. Although modern refluxing brines show magnesium depletion indicative of 10 

dolomitisation (e.g. Whitaker et al., 2014),  the rapidity of recent sea-level rise has given 11 

insufficient time to substantially dolomitise carbonates within and underlying modern  brine 12 

lagoons (Warren, 2000). Low amplitude eustatic fluctuations in sea-level serve not only to 13 

extend the duration of emersion of carbonate sediments in seawater/brines, but might also 14 

preserve them from dissolution and/or dedolomitisation by meteoric fluids which are 15 

characteristically dolomite undersaturated (Hardie, 1987; Deike, 1990).  16 

During icehouse periods lower atmospheric pCO2 causes an increase of the saturation state of 17 

seawater with respect to all carbonate minerals (Given & Wilkinson, 1987) and it has been 18 

suggested that these conditions may favour synsedimentary dolomite formation (Mackenzie 19 

& Pigott, 1981; Machel & Mountjoy, 1986).  Numerical simulations comparing the effect of 20 

aragonite and calcite as precursor minerals for reflux dolomitisation suggest that although 21 

aragonite is dolomitised faster than calcite, aragonite tends to be replaced by calcite at rates 22 

significantly faster than those of dolomitisation. Once aragonite has been completely lost 23 

dolomitisation continues by replacement of calcite, confirming that precursor mineralogy is 24 

likely not an important control on replacement dolomitisation.  Indeed it is now recognised 25 
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that aragonite supersaturation in the modern ocean results not from low pCO2 but from high 1 

Mg/Ca which inhibits calcite precipitation (Morse et al., 1997). In turn, there is increasing 2 

evidence (e.g. Holland, 2005; Pogge von Strandmann et al., 2014) to support the suggestion 3 

of Wilkinson & Algeo (1989) that dolomitisation is a driver, rather than a consequence, of 4 

major secular changes in seawater Mg/Ca. 5 

 6 

(B) Sensitivity analysis 7 

Shallow reflux dolomitisation systems are sensitive to changes in seawater chemistry, but this 8 

control operates within the context of other extrinsic and intrinsic controls. In contrast to 9 

natural systems, numerical simulations provide the opportunity to evaluate the relative 10 

importance of individual parameters. Results from a sensitivity analysis using 89‰ 11 

Mississippian brine as the baseline are summarised in tornado charts (Fig. 15). The time 12 

required to replace all calcite for the baseline simulation (165 kyr) is represented by the black 13 

vertical line, and horizontal bars show the range of replacement times spanned by simulations 14 

over the specified range of parameter values.  15 

Rates of replacement of sediments with an effective RSA from 10,000 cm
2
/g to 250 cm

2
/g, 16 

corresponding to dolomite rhombs from 2.5 μm to 100 μm respectively, significantly affect 17 

the time to reach complete replacement of calcite by dolomite. Over the range of parameter 18 

values investigated, the RSA is almost as important as the degree of evaporative 19 

concentration of brine (salinity from 35‰ to 120‰). The importance of this control has also 20 

been demonstrated in 2D simulations, where higher initial RSA results in greater lateral 21 

extension of dolomite bodies from the brine source at specific time slices (Jones & Xiao, 22 

2005; Al-Helal et al., 2012b). Fine-grained sediments are more reactive and tend to be 23 

dolomitised at a faster rate than coarse-grained sediments according to a power law (Fig. 24 

10F). This accords with many observations of preferential dolomitisation of mudstone beds in 25 
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the rock record (e.g. Hopkins, 2004; Cantrell et al. 2004; Smith et al., 2004). In contrast, 1 

dolomitised grainstone beds within more muddy limestones (e.g. Sharp et al., 2010; Hollis et 2 

al., 2011; Martín-Martín et al., 2013) are less common and tend to be associated with higher 3 

temperature systems where alteration is likely flux rather than reaction rate limited. However, 4 

simple assumptions relating reactivity to grain size can be misleading. Thus for example the 5 

RSA of an ooid grainstone derived geometrically from the grain diameter might be a 6 

significant underestimate where algal boring of the outer cortex  provides dolomitising fluids 7 

access to the complex inner structure of the ooid (Griffiths et al., 2013). In natural systems, 8 

RSA will also change during dolomitisation, with a progressive increase in rhomb size 9 

serving to reduce the rate of dolomitisation, at a stage when simulations predict it to be most 10 

rapid. Incorporation of these complexities in future models offers an opportunity to evaluate 11 

such feedbacks, particularly if coupled with laboratory experiments.  12 

Although simulations evaluate a relatively limited temperature range (20-40 °C), the effect on 13 

dolomitisation rate is comparable to that of a forty times change in RSA (from 250 to 10,000 14 

cm
2
/g), with higher temperatures speeding up dolomitisation according to a power 15 

relationship (Fig. 8F). Previous simulations of brine reflux in a generic 2D platform showed a 16 

direct dependence of dolomitisation rate on platform top-temperature above a threshold of ca. 17 

30 °C, although at 45 °C the dolomitisation rate declines due to anhydrite precipitation (Al-18 

Helal et al., 2012b). Variations in sea-surface temperature over geologic time can be inferred 19 

from paleoclimatic reconstruction, so that times more favourable for dolomitisation can be 20 

hypothesised. In addition to a temporal and latitudinal control on climate, seasonal variations 21 

can be significant. Annual temperature variation in modern sabkhas of the Arabian Gulf can 22 

be extreme, with summer surface temperatures often exceeding 50 °C but falling below 10 °C 23 

at night during the winter (Lokier, 2012). The paleoclimatic regime is critical in determining 24 

whether temperature and brine concentration maxima are coincident at times of maximum 25 
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solar insolation, or whether seasonal rainfall at these times would dilute platform top fluids 1 

and reduce geochemical potential for reflux dolomitisation.   2 

Within the simulated 10 m depth, dolomitisation rate appears to be controlled by fluid flow 3 

only at very low fluxes (≤0.01m/yr; Fig. 12). This is in agreement with the simulations 4 

performed by Jones & Xiao (2005), that show a substantial decrease in the rate of dolomite 5 

formation (-0.65 volume %/kyr) when specifying initial flow velocities on the order of 6 

centimetres-per-year rather than meters-per-years. This result, particularly when coupled with 7 

the lower RSA for many grainstones, challenges the explanation of cases where brine reflux 8 

has preferentially dolomitised more permeable grainstone units. Such instances may indicate 9 

that the dolomitising system is flux limited, perhaps due to a low head gradient that may 10 

characterise extensive brine pools lacking a physical barrier to circulation, and indicate that 11 

dolomitisation rates may be slow (Gabellone et al., 2014b). However, at a higher flow rate 12 

the shallow reactions consume less Mg
2+

, allowing replacement dolomitisation to extend to 13 

greater depth below the simulated section.  14 

Simulations suggest that variation of pH and carbonate alkalinity associated with changes in 15 

pCO2 has little impact on the rate of replacement dolomitisation in the shallow subsurface 16 

(Fig. 9). However biologically-mediated formation of dolomite or very-high-Mg calcite, 17 

which may be critical in generating dolomite “seeds” (Vasconcelos & McKenzie, 1997; 18 

Bontognali et al., 2012) or even in contributing to massive dolomitisation in sediments 19 

beneath lagoons (McKenzie & Vasconcelos, 2009), is beyond the scope of the current model. 20 

Over the range of values explored in this suite of simulations, the rate of post-replacement 21 

dolomite cementation shows lower sensitivity to changes in controlling parameters than does 22 

the rate of replacement (Fig. 15B). The exception is fluid flux, which provides a direct 23 

control on cementation rate, with higher fluxes yielding higher rates of post-replacement 24 

cementation. This appears to favour cementation in areas of high head gradient and in 25 
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sediments with an initial high permeability. Thus, as long as replacement dolomitisation is 1 

not flux limited, it will favour more reactive sediments that may also have initially been less 2 

permeable, whilst cementation may preferentially affect more permeable units. The effect of 3 

reflux on dolomitisation will thus vary spatially from areas immediately underlying the brine 4 

pool where brines will be forced vertically through beds which may have differing reactivity 5 

irrespective of their permeability, to areas downstream of the brine pool where lateral 6 

(bedding parallel) flow will be focussed along more permeable units (Gabellone et al., 7 

2014b). At times of favourable brine composition, this flux dependence is likely to result in 8 

precipitation of dolomite cement in the more permeable grainstones, but at a much slower 9 

rate in the low permeability mudstones due to low fluid fluxes. During subsequent episodes 10 

of replacement, the previously formed dolomite cements serve as nuclei and favour 11 

preferential dolomitisation of the grainstones. 12 

In natural systems there will be links between some of the parameters which here have been 13 

evaluated independently. One example is the likely, though not inevitable, inverse correlation 14 

between RSA and permeability resulting from a common grain size control. Fine-grained 15 

sediments are highly reactive providing potential for more rapid replacement dolomitisation 16 

than coarse-grained sediments. However, this effect may be offset by the lower permeability 17 

of finer sediments which will limit rates of fluid flow for a given effective head gradient. 18 

Contrastingly, fluid flux and brine salinity are positively correlated, as evaporative 19 

concentration provides the density gradient to drive flow as well as increasing both absolute 20 

concentrations of reactive solutes and the Mg/Ca. This effect will directly increase dolomite 21 

cementation, but only affect replacement dolomitisation in systems where this reaction is flux 22 

limited. Similarly, increased solar insolation will result in both kinetically favourable high 23 

temperatures and higher rates of evaporation which will favour formation of more saline 24 
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brines. These synergies should be considered when applying results of these numerical 1 

experiments investigating individual controls to natural systems.  2 

The veracity of RTM predictions of absolute rates of dolomitisation remains limited by the 3 

still poor understanding of thermodynamics and especially kinetics of the process at the 4 

relatively low temperatures of systems modelled here. Consonni et al. (2010) show how 5 

variations of the precipitation and dissolution kinetic constants of dolomite by five orders of 6 

magnitude considerably affects the rate and dynamics of the dolomitisation process, with 7 

faster kinetics giving sharp dolomitisation fronts in contrast to large zones of partial 8 

dolomitisation resulting from slower kinetics. Here the use of kinetic rates from Arvidson & 9 

Mackenzie (1999) allows a direct comparison with previous RTM studies of dolomitisation 10 

(Wilson et al., 2001; Jones & Xiao,  2005; Whitaker & Xiao, 2010, Al-Helal et al., 2012a, b). 11 

The annotation of the time axis in terms of time to complete replacement of calcite by 12 

dolomite relative to that required by normal modern seawater in the graphs showing the 13 

predicted changes in mineralogy through time (Figs 3, 5, 7-10, 12) should facilitate future 14 

comparisons as understanding of thermodynamics and kinetics of dolomitisation evolves.  15 

 16 

(A) CONCLUSIONS 17 

One-dimensional reactive transport modelling of vertical brine reflux in shallow carbonate 18 

systems allowed evaluation of the control of secular variations in seawater chemistry on 19 

dolomitisation and associated porosity modification. Simulations suggest faster replacement 20 

of calcite by dolomite during periods of aragonite seas than in periods of calcite seas, solely 21 

in response to changes in seawater Mg/Ca. In all the modelled scenarios, replacement 22 

dolomitisation is accompanied by increase in porosity, which is then reduced by precipitation 23 

of dolomite cement. The rates of both replacement and dolomite cementation are enhanced by 24 

increasing brine salinity, irrespective of associated higher rates of density-driven fluid flow. 25 
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Other factors exerting a major control on dolomitisation rates in shallow reflux systems 1 

include effective reactive surface area of precursor sediments and temperature. The control of 2 

fluid flux seems to be significant only at very low flux rates, whilst changes of pH and 3 

carbonate alkalinity associated with variation in pCO2 appear to have only a minor impact. 4 

Higher Mg/Ca in aragonitic seas would appear to favour dolomitisation from seawater-5 

derived fluids. However, the impact of other controls such as temperature and the eustatic 6 

sea-level support evidence for formation of significant volumes of dolomite during periods of 7 

calcitic seas. Simulations thus support the hypothesis originally advanced by Wilkinson & 8 

Algeo (1989) that dolomitisation is a driver rather than a consequence of major secular 9 

changes in seawater Mg/Ca. 10 

An important limitation of these simulations relates to parameterisation of the kinetic rate law 11 

which derived from experiments at significantly higher temperatures than the modelled 12 

system (Arvidson & Mackenzie, 1999). This introduces uncertainty in absolute rates of 13 

dolomitisation, although the general form of the relationships is likely more robust. 14 

Furthermore the effects of biological mediation, which have been suggested to be important 15 

in some studies of recent dolomitisation (e.g. Vasconcelos & McKenzie, 1997; Bontognali et 16 

al., 2012) are not considered. Notwithstanding, the simple numerical experiments presented 17 

can provide an important contribution to unravelling diagenesis, enabling the evaluation of 18 

individual parameters and the generation of a physically and chemically-based set of guiding 19 

principles. Numerical models in general also serve to highlight those parameters which are 20 

likely to be of particular importance and direct future work. For example, this study suggests 21 

that effective RSA is a critical control on dolomitisation, suggesting the importance of 22 

depositional textures in reaction-rate limited system. However, our understanding of 23 

reactivity is yet poorly developed. This systematic evaluation has laid the foundation for 24 

future simulations to explore the effect of interactions between individual controls. In this 25 
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respect, simulations of specific case studies can provide constraints on realistic spatial facies 1 

distribution, allowing exploration of how depositional textures affect the pattern of 2 

dolomitisation through the combined control of both fluid flux via permeability architecture 3 

and reaction rate via the effective surface area. 4 
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 1 

Figure 1: Saturation indices of simulated carbonate and sulphate minerals during evaporation 2 

of modern (A), Aptian (B) and Mississippian (C) seawater at 30 °C. 3 

 4 

Figure 2: Volume of dolomite precipitated from different normal marine (35‰) seawaters at 5 

30 °C from three different times in closed system (batch) reactive transport simulations. 6 

 7 

Figure 3:  Changes in mineralogy (volume fraction; A-C, E and F) and percent porosity (D) 8 

over 500 kyr predicted by reactive transport simulations of 30 °C modern normal-marine 9 

seawater and seawater-derived brines at 9.5 m depth. Mass-balance calculations allow 10 

discrimination between replacive dolomite (C) and dolomite cement (E). The upper x-axis in 11 

A and B represents the time relative to that required for complete replacement of calcite by 12 

dolomite by normal modern seawater (1). 13 

 14 

Figure 4: Reactive transport modelling results for 30 °C modern and Mississippian normal-15 

marine seawaters and seawater-derived brines at 9.5 m depth. A) Time required to dolomitise 16 

all the initial calcite. For both modern and Mississippian fluids the time needed to replace 17 

calcite has an inverse power-law correlation to salinity. Dolomitisation time increases 18 

substantially for the 200‰ Mississippian brine due to gypsum precipitation which occludes 19 

pore volume and reduces flow rates. B) Porosity loss at 100 kyr after complete calcite 20 

replacement. Porosity reduction is due to dolomite cementation and shows a linear correlation 21 

with salinity for both modern and Mississippian fluids below gypsum saturation. 22 

 23 

Figure 5: Changes in mineralogy (volume fraction; A-C, E and F) and percent porosity (D) 24 

over 500 kyr as predicted by reactive transport simulations of 30 °C Mississippian (solid 25 
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lines) and Aptian (dashed lines) seawaters and seawater-derived brines at 9.5 m depth. Mass-1 

balance calculations allowed discrimination between replacive dolomite (C) and dolomite 2 

cement (E) for the Mississippian fluids. The simultaneous precipitation of calcite and 3 

dolomite from Aptian fluids prohibits these calculations. For the 200‰ brines, only the 4 

gypsum volume fraction is displayed (F). 5 

 6 

Figure 6: Reactive transport modelling results for (A) modern and (B) Mississippian 7 

seawaters and their associated seawater-derived brines at 30 °C as a function of precursor 8 

mineralogy (calcite or aragonite). The time required to dolomitise all the initial CaCO3 is 9 

displayed at 9.5 m depth and shows an inverse power-law correlation with brine salinity, with 10 

the exception of the 200‰ Mississippian brine for which dolomitisation is slowed as a result 11 

of gypsum precipitation occluding pore volume and reducing fluid fluxes. 12 

 13 

Figure 7:  Changes in mineralogy (volume fraction; A-C) and percent porosity (D) for 14 

simulations using different kinetic rate constants for both aragonite and calcite. Results are 15 

for reflux of 30 °C Mississippian seawater-derived brine of 89‰ salinity at 9.5 m. 16 

Enlargement in C shows the loss of aragonite over the first 10 kyr. 17 

 18 

Figure 8: Changes in mineralogy (volume fraction; A-D) and percent porosity (E) for 19 

Mississippian seawater-derived brines of 89‰ salinity at different temperatures and at 9.5 m 20 

depth. F) Time to dolomitise all calcite and extent of porosity loss 100 kyr after complete 21 

calcite replacement. Note the negative power-law relationship between time needed to 22 

complete replacement and temperature and the linear relationship between porosity loss and 23 

temperature. 24 

 25 
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Figure 9: Changes in mineralogy (volume fraction; A-D) and percent porosity (E) for 1 

Mississippian brine of 89‰ salinity in equilibrium with different pCO2 values at 9.5 m depth. 2 

F) Time to dolomitise all calcite and porosity loss 100 kyr after complete calcite replacement. 3 

Note the negative logarithmic relationship between the time to complete replacement and 4 

pCO2. For pCO2 of 350 and 1000 ppmv, simultaneous calcite and dolomite precipitation 5 

hinders discrimination of cement and replacement dolomite volumes. 6 

 7 

Figure 10: Changes in mineralogy (volume fraction; A-D) and percent porosity (E) for 8 

different reactive surface areas (RSA) and Mississippian brine of 89‰ salinity. Data from 9.5 9 

m depth. F) Time to dolomitise all calcite and porosity loss 100 kyr after complete calcite 10 

replacement at 9.5 m depth. Note the negative power-law and logarithmic relationships 11 

between the time to complete replacement and RSA and between porosity loss and RSA, 12 

respectively. For RSA = 100 and 250 cm
2
/g, the simultaneous occurrence of calcite and 13 

dolomite precipitation prohibits calculation of cement and replacement dolomite volumes. 14 

 15 

Figure 11: Depth distribution of total dolomite (A), replacive dolomite (B), and dolomite 16 

cement (C) formed by injection of  89‰ Mississippian  brine at rates from 0.01 to 2 m/yr, 17 

plotted for 100 kyr (dashed lines) and 500 kyr (solid lines). Note for figure B that 18 

replacement is complete in all simulations at 500 kyr. 19 

 20 

Figure 12: Changes in mineralogy (volume fraction; A-D) and percent porosity (E) for 21 

different injection rates of Mississippian brine of 89‰. F) Time required to dolomitise all 22 

calcite and porosity loss 100 kyr after complete calcite replacement at 9.5 m depth. Note the 23 

negative power-law and the logarithmic relationships between time to complete replacement 24 

and fluid flux and between porosity loss and fluid flux, respectively. 25 
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 1 

Figure 13: A) Relationship between brine salinity for fluids below gypsum saturation and the 2 

exponent x of the equation Dolt = Dol0 e 
(xt) 

describing the rate of dolomite formation, where 3 

Dolt is dolomite volume fraction at time t, Dol0  is the initial (“seed”) dolomite volume 4 

fraction, and t is the time in kyr.  For each source water the exponent is a product of the 5 

salinity and a gradient term a (R
2
 for all three fluids >0.99). B) Relationship between the 6 

Mg/Ca molar ratio of the source fluids and the gradient a of each of the best fit lines of 7 

Figure 13A; y=5.934E-8x
1.847

. 8 

 9 

Figure 14: Secular changes of seawater Mg/Ca molar ratio from Hardie (1996; A); percentage 10 

of replacive dolomite predicted from normal marine seawater and two evaporative brines in 11 

100 kyr assuming 1% of dolomite “seed” and 40% porosity using equation 2 (B); and 12 

dolomite abundance as percent of the total carbonate rock record from Given & Wilkinson 13 

(1987; C). 14 

 15 

Figure 15: Tornado diagrams summarising the sensitivity analysis of 1D reactive transport 16 

simulations using 89‰ Mississippian brine at 30 °C as the baseline. Results are displayed at 17 

9.5 m depth. The baseline simulation is represented by the black vertical line, whist the length 18 

of the horizontal bars shows the range of replacement times (A) and the range of volumes of 19 

dolomite cement precipitated 100 kyr after replacement (B) spanned by simulations over the 20 

specified range of parameter values. Curves drawn inside each bar represent the form of the 21 

relationship (power-law, logarithmic, linear; positive or negative) between each controlling 22 

parameter and the diagenetic response. 23 

 24 

Captions of online supplementary figures: 25 
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Figure S1: Changes in mineralogy (volume fraction; A-C, E and F) and percent porosity  (D) 1 

over 500 kyr as predicted by reactive transport simulations of 30 °C Mississippian seawater 2 

and seawater-derived brines at 9.5 m depth. Mass-balance calculations allowed 3 

discrimination between replacive dolomite (C) and dolomite cement (E). 4 

 5 

Figure S2: Changes in mineralogy (volume fraction; A-C) and percent porosity (D) over 500 6 

kyr as predicted by reactive transport simulations of 30 °C Aptian seawater and seawater 7 

derived brines at 9.5 m depth. The simultaneous precipitation of calcite and dolomite 8 

prohibits calculation of replacive and cement dolomite volumes. 9 
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Component 
(mol/Kg) 

Modern  
seawater 

Aptian  
seawater 

Early Carboniferous 
seawater 

pH 8.22 7.6 7.7 
Na+ 4.85e-1 4.15e-1 4.77e-1 
Mg2+ 5.51e-2 4.20e-2 4.46e-2 
Ca2+ 1.07e-2 3.55e-2 1.93e-2 
K+ 1.06e-2 1.10e-2 1.12e-2 
Cl- 5.66e-1 5.65e-1 5.76e-1 
SO4

-2 2.93e-2 8.50e-3 1.83e-2 
HCO3

- 2.13e-3 2.92e-3                 3.14e-3  
pCO2(ppmv) 394  2400 1400 
Mg/Ca molar ratio 5.1 1.2 2.3 
    
Saturation index    
Dolomite  3.51  3.08  3.07 
Calcite  0.78  0.87  0.73 
Gypsum -0.77 -0.76 -0.70 
Anhydrite -0.89 -0.87 -0.81 
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