95 research outputs found

    Differentiated Anti-Predation Responses in a Superorganism

    Get PDF
    Insect societies are complex systems, displaying emergent properties much greater than the sum of their individual parts. As such, the concept of these societies as single 'superorganisms' is widely applied to describe their organisation and biology. Here, we test the applicability of this concept to the response of social insect colonies to predation during a vulnerable period of their life history. We used the model system of house-hunting behaviour in the ant Temnothorax albipennis. We show that removing individuals from directly within the nest causes an evacuation response, while removing ants at the periphery of scouting activity causes the colony to withdraw back into the nest. This suggests that colonies react differentially, but in a coordinated fashion, to these differing types of predation. Our findings lend support to the superorganism concept, as the whole society reacts much like a single organism would in response to attacks on different parts of its body. The implication of this is that a collective reaction to the location of worker loss within insect colonies is key to avoiding further harm, much in the same way that the nervous systems of individuals facilitate the avoidance of localised damage

    Ants show a leftward turning bias when exploring unknown nest sites

    Get PDF
    Behavioural lateralization in invertebrates is an important field of study because it may provide insights into the early origins of lateralization seen in a diversity of organisms. Here, we present evidence for a leftward turning bias in Temnothorax albipennis ants exploring nest cavities and in branching mazes, where the bias is initially obscured by thigmotaxis (wall-following) behaviour. Forward travel with a consistent turning bias in either direction is an effective nest exploration method, and a simple decision-making heuristic to employ when faced with multiple directional choices. Replication of the same bias at the colony level would also reduce individual predation risk through aggregation effects, and may lead to a faster attainment of a quorum threshold for nest migration. We suggest the turning bias may be the result of an evolutionary interplay between vision, exploration and migration factors, promoted by the ants' eusociality

    A social mechanism facilitates ant colony emigrations overdifferent distances

    Get PDF
    Behavioural responses enable animals to react rapidly to fluctuating environments. In eusocial organisms, such changes are often enacted at the group level, but may be organised in a decentralised fashion by the actions of individuals. However, the contributions of different group members are rarely homogeneous, and there is evidence to suggest that certain ‘keystone’ individuals are important in shaping collective responses. Accordingly, investigations of the dynamics and structuring of behavioural changes at both the group and individual level are crucial for evaluating the relative influence of different individuals. Here, we examined the composition of tandem running behaviour during colony emigrations in the ant species Temnothorax albipennis. Tandem running is modulated in response to emigration distance, with more runs being conducted when a more distant nest site must be reached. We show that certain individuals are highly active in the tandem running process, attempting significantly more work in thetask. Contrary to expectations, however, such individuals are in fact no more successful at conducting tandem runs than their less active nest mates. Instead, it seems that when more tandem runs are required, colonies rely on greater recruitment of workers into the process. The implications of our study are that in some cases, even when apparently ‘key’ individuals exist within a group, their relative contribution to task performance may be far from decisive

    Migration control: A distance compensation strategy in ants

    Get PDF
    ©The Author(s) 2016. This article is published with open access at Springerlink.com. Migratory behaviour forms an intrinsic part of the life histories of many organisms but is often a high-risk process. Consequently, varied strategies have evolved to negate such risks, but empirical data relating to their functioning are limited. In this study, we use the model system of the househunting ant Temnothorax albipennis to demonstrate a key strategy that can shorten migration exposure times in a group of social insects. Colonies of these ants frequently migrate to new nest sites, and due to the nature of their habitat, the distances over which they do so are variable, leading to fluctuating potential costs dependent on migration parameters. We show that colonies of this species facultatively alter the dynamics of a migration and so compensate for the distance over which a given migration occurs. Specifically, they achieve this by modulating the rate of ‘tandem running’, in which workers teach each other the route to a new nest site. Using this method, colonies are able to engage a larger number of individuals in the migration process when the distance to be traversed is greater, and furthermore, the system appears to be based on perceived encounter rate at the individual level. This form of decentralised control highlights the adaptive nature of a behaviour of ecological importance, and indicates that the key to its robustness lies in the use of simple rules. Additionally, our results suggest that such coordinated group reactions are central to achieving the high levels of ecological success seen in many eusocial organisms

    Deconstructing superorganisms and societies to address big questions in biology

    Get PDF
    Social insect societies are long-standing models for understanding social behaviour and evolution. Unlike other advanced biological societies (such as the multicellular body), the component parts of social insect societies can be easily deconstructed and manipulated. Recent methodological and theoretical innovations have exploited this trait to address an expanded range of biological questions. We illustrate the broadening range of biological insight coming from social insect biology with four examples. These new frontiers promote open-minded, interdisciplinary exploration of one of the richest and most complex of biological phenomena: sociality

    Where did it all go wrong? Implementation failure - and more - in a field experiment of procedural justice policing

    Get PDF
    Objectives: This paper presents the findings from a retrospectively conducted qualitative process evaluation to the Scottish Community Engagement Trial (ScotCET). The study explores the unanticipated results of a randomised field trial testing the effect of ‘procedurally just’ modes of road policing on public perceptions of police. The ScotCET intervention failed to produce the hypothesised results, producing instead significant, and unexplained, negative effects on key aspects of public perception. The present study seeks to examine, from the perspectives of officers implementing the experiment, what the impacts (intended or otherwise) of participation were. Methods: Group interviews were held within the ScotCET experiment ‘units’ to explore how officers had collectively interpreted and framed ScotCET, and responded as a group to its requirements/ demands. Nine groups were held over a 5 month period post experiment completion. Results: Findings indicate that communication breakdowns during the ScotCET implementation led to misunderstandings of its aims and objectives, and of the requirements placed on officers. Within a context of organisational reform and perceived organizational ‘injustice’, commonly cited aspects of police culture were invoked to facilitate officer non-compliance with aspects of the experimental intervention, leading to implementation failures, and, possibly, a diffuse negative effect on the attitudes and behaviours of experiment officers. Conclusions: Organizational structures and processes, and coercive top-down direction, are insufficient to ensure successful implementation of policing research, and, by implication, policing reforms, particularly those that demand alternative ways of ‘doing’ policing and ‘seeing’ citizens. Greater investment in organisational justice and encouraging openness to evidence-led knowledge is needed to promote change

    Fast implementations of algebraic methods for three-dimensional reconstruction from cone-beam data

    No full text
    • …
    corecore