6,120 research outputs found
Stochastic Gravitational Wave Measurements with Bar Detectors: Dependence of Response on Detector Orientation
The response of a cross-correlation measurement to an isotropic stochastic
gravitational-wave background depends on the observing geometry via the overlap
reduction function. If one of the detectors being correlated is a resonant bar
whose orientation can be changed, the response to stochastic gravitational
waves can be modulated. I derive the general form of this modulation as a
function of azimuth, both in the zero-frequency limit and at arbitrary
frequencies. Comparisons are made between pairs of nearby detectors, such as
LIGO Livingston-ALLEGRO, Virgo-AURIGA, Virgo-NAUTILUS, and EXPLORER-AURIGA,
with which stochastic cross-correlation measurements are currently being
performed, planned, or considered.Comment: 17 pages, REVTeX (uses rcs, amsmath, hyperref, and graphicx style
files), 4 figures (8 eps image files
Development and application of a catchment scale pesticide fate and transport model for use in drinking water risk assessment
This paper describes the development and application of IMPT (Integrated Model for Pesticide Transport), a parameter-efficient tool for predicting diffuse-source pesticide concentrations in surface waters used for drinking water supply. The model was applied to a small UK headwater catchment with high frequency (8 h) pesticide monitoring data and to five larger catchments (479–1653 km2) with sampling approximately every 14 days. Model performance was good for predictions of both flow (Nash Sutcliffe Efficiency generally > 0.59 and PBIAS < 10%) and pesticide concentrations, although low sampling frequency in the larger catchments is likely to mask the true episodic nature of exposure. The computational efficiency of the model, along with the fact that most of its parameters can be derived from existing national soil property data mean that it can be used to rapidly predict pesticide exposure in multiple surface water resources to support operational and strategic risk assessments
Physical parameters of the Cen X-3 system
Photographic spectra of Cen X-3 show that the primary star has a spectral type near 06.5 with weak, variable emission at wavelength 4640 and 4686. No orbital motion of the emission or absorption lines is detected; for the latter the upper limit is approximately + or - 50 km/s. Analysis of the available data indicates that the primary is a factor of 2-3 less massive than expected from normal evolutionary models while the X-ray source has a solar mass near 1.5
Accretion-ejection connection in the young brown dwarf candidate ISO-Cha1 217
As the number of observed brown dwarf outflows is growing it is important to
investigate how these outflows compare to the well studied jets from young
stellar objects. A key point of comparison is the relationship between outflow
and accretion activity and in particular the ratio between the mass outflow and
accretion rates (/). The brown dwarf candidate
ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric
study of brown dwarfs, to be driving an asymmetric outflow with the
blue-shifted lobe having a position angle of 20. The aim here
is to further investigate the properties of ISO-ChaI 217, the morphology and
kinematics of its outflow, and to better constrain
(/). The outflow is spatially resolved in the
lines and is detected out to 1\farcs6
in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry
between the two lobes is confirmed although the velocity asymmetry is less
pronounced with respect to our previous study. Using thirteen different
accretion tracers we measure log() [M/yr]= -10.6
0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI
217 outflow was derived for a range of values of A, up to
a value of A = 2.5 mag estimated for the source extinction. The logarithm
of the mass outflow () was estimated in the range -11.7 to -11.1
for both jets combined. Thus / [\Msun/yr] lies
below the maximum value predicted by magneto-centrifugal jet launching models.
Finally, both model fitting of the Balmer decrements and spectro-astrometric
analysis of the H line show that the bulk of the H I emission comes
from the accretion flow.Comment: accepted by Astronomy & Astrophysic
XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud
Aims. We present an X-ray study of the supernova remnant SNR J0533-7202 in
the Large Magellanic Cloud (LMC) and determine its physical characteristics
based on its X-ray emission. Methods. We observed SNR J0533-7202 with
XMM-Newton (flare-filtered exposure times of 18 ks EPIC-pn and 31 ks
EPIC-MOS1/MOS2). We produced X-ray images of the SNR, performed an X-ray
spectral analysis, and compared the results to multi-wavelength studies.
Results. The distribution of X-ray emission is highly non-uniform, with the
south-west region brighter than the north-east. The X-ray emission is
correlated with the radio emission from the remnant. We determine that this
morphology is likely due to the SNR expanding into a non-uniform ambient medium
and not an absorption effect. We estimate the size to be 53.9 (\pm 3.4) x 43.6
(\pm 3.4) pc, with the major axis rotated ~64 degrees east of north. We find no
spectral signatures of ejecta and infer that the X-ray plasma is dominated by
swept-up interstellar medium. Using the spectral fit results and the Sedov
self-similar solution, we estimate an age of ~17-27 kyr, with an initial
explosion energy of (0.09-0.83) x 10^51 erg. We detected an X-ray source
located near the centre of the remnant, namely XMMU J053348.2-720233. The
source type could not be conclusively determined due to the lack of a
multi-wavelength counterpart and low X-ray counts. We find that it is likely
either a background active galactic nucleus or a low-mass X-ray binary in the
LMC. Conclusions. We detected bright thermal X-ray emission from SNR J0533-7202
and determined that the remnant is in the Sedov phase of its evolution. The
lack of ejecta emission prohibits us from typing the remnant with the X-ray
data. Therefore, the likely Type Ia classification based on the local stellar
population and star formation history reported in the literature cannot be
improved upon.Comment: 7 pages, 4 figures, accepted for publication in Astronomy and
Astrophysic
National Inquiry on Bushfire Mitigation and Management
Bushfires are an inherent part of the Australian environment. We cannot prevent them, but we can minimise the risks they pose to life, property and infrastructure, production systems, and the environment. Australia has a large and very capable force of volunteer and career firefighters, advanced firefighting technologies, and significant firefighting resources. But the geographical scale of our country, the large and expanding rural–urban interface, and the potential for rapid bushfire development and spread under adverse weather conditions mean that individual Australians cannot rely solely on fire agencies to protect their lives and property from bushfires. Bushfires have a fundamental and irreplaceable role in sustaining many of Australia’s natural ecosystems and ecological processes and are a valuable tool for achieving land management objectives. However, if they are too frequent or too infrequent, too severe or too mild, or mistimed, they can erode ecosystem health and biodiversity and compromise other land management goals. We have been learning to live with fire since the first Australians arrived on our continent. We need to continue, and enrich, that learning process in contemporary circumstances and be able to adapt our planning and responses to change. This report seeks to help all Australians meet these challenges
Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters
Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions
Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection
Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients
SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host
- …