27 research outputs found

    Probabilistic Assessment of Tunguska-Scale Asteroid Impacts

    Get PDF
    The Tunguska meteor airburst that felled trees across >2000 sq km of Siberian forest in 1908 has been extensively studied and modeled in attempts to deduce its size, properties, and impact characteristics. However, most of the existing modeling and simulation studies have investigated a small subset of cases based on assumptions of representative densities, velocities, or other properties. In this study, we use the Probabilistic Asteroid Impact Risk (PAIR) model to assess 50 million Tunguska-scale asteroid impacts, covering a full range of potential impactor properties. The impact cases are sampled from probabilistic distributions representing our current knowledge of asteroid properties, entry trajectories, and size frequencies, and the entry, airburst, and resulting ground damage are modeled for each case. The results provide a broader characterization of the range and relative likelihood of asteroid properties that could yield Tunguska-scale impacts. The full results of this study and a companion study on impact frequencies are pending publication in an upcoming Tunguska special edition of Icarus [1,2]

    Asteroid Impact Risk Assessment

    Get PDF
    No abstract availabl

    Sensitivity of Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    Get PDF
    A central challenge in evaluating the threat posed by asteroids striking Earth is the large amount of uncertainty in potential asteroid properties and entry parameters, which can vary the resulting ground damage and affected population by orders of magnitude. We are using our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to these uncertainties. To assess the risk sensitivity, we alternately fix or vary the different input parameters and compare the damage distributions produced. In this study, we consider local ground damage from blast waves or thermal radiation for impactors 50-500m in diameter. The ongoing goal of this work is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk

    Comparison of Damage from Hydrocode Simulations of an Asteroid Airburst or Impact on Land, in Deep, or in Shallow Water

    Get PDF
    If an asteroid is discovered to be on a collision course with Earth and there is insufficient time for a deflection effort to make it miss Earth completely, should it be redirected to a land or ocean impact? While distance from densely populated areas should obviously be maximized, the differing ability of air blast, seismic waves, and tsunami waves to cause damage at distance does not make the choice between land and ocean impacts an immediately obvious one. More broadly this work is a step towards improving damage models from asteroid impacts. This extended abstract follows the hypothetical scenario of the 2017 IAA Planetary Defense Conference where a 100-250m diameter asteroid is on a potential impact course with Earth. A hydrocode was used to simulate impacts into the most sparsely populated areas along the eastern end of the hypothetical impact corridor- specifically in the Gobi Desert, in the shallow waters of the Sea of Japan, and in the deep waters of the Japan Trench in the Pacific Ocean

    A Ground Footprint Eccentricity Model For Asteroid Airbursts

    Get PDF
    Uncertainties in early observations of potentially hazardous asteroids result in preliminary impact corridors that can stretch across large portions of the Earths surface. At this early stage of detection, the corridor width and potential for damage are typically estimated using techniques from nuclear weapons research. These estimates often employ spherical blast assumptions resulting in a constant width impact corridor. In actuality, however, the ground damage footprint of obliquely entering asteroids is generally roughly elliptical or butterfly shaped, with the major axis extending in the cross range direction and the minor axis aligned with ground-track of the meteoroid. Since actual ground footprints for oblique entries may have aspect ratios greater than two or three, the assumption of a circular blast may significantly underestimate the area of the impact swath and the at-risk population. This work develops an engineering model that can be used to quickly estimate the eccentricity of the ground footprint as a function of local impact parameters. This yields vastly improved local estimates of the corridor width and can significantly enhance the accuracy of risk analysis

    Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Get PDF
    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment

    Risk Estimation of Threatening Asteroids

    Get PDF
    When faced with the question of designing an asteroid deflection mission or with the decision of launching it, significant uncertainties are present in the asteroids physical properties, and its orbit solution. The success of the deflection mission relies heavily on these aspects. For example, a heavier than expected asteroid will reduce the imparted deflection DV. So will a larger porosity value by reducing the beta factor [1]. Here, we present a new capability that estimates asteroid impact risk under consideration of these uncertainties. The new method samples the uncertainty space along multiple dimensions, performs a predetermined deflection, propagates the deflected samples to the Earth, models the impact damage, and estimates the overall risk outcome. The work builds on the Probabilistic Asteroid Impact Risk (PAIR) assessment tool [2] by including orbital uncertainty and deflection capabilities. We demonstrate this risk estimation approach for threatening asteroids using the example of the fictitious impactor 2019 PDC. Such analysis provides a quantitative basis for the work of decision makers and disaster managers. It may further find application in areas such as mitigation mission planning where projected post-mitigation risk can be compared to premitigation levels as a means of cost-benefit analysis formitigation options

    Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Get PDF
    AbstractDuring asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or “pancake” model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve

    Atmospheric Energy Deposition Modeling and Inference for Varied Meteoroid Structures

    Get PDF
    Asteroids populations are highly diverse, ranging from coherent monoliths to loosely-bound rubble piles with a broad range of material and compositional properties. These different structures and properties could significantly affect how an asteroid breaks up and deposits energy in the atmosphere, and how much ground damage may occur from resulting blast waves. We have previously developed a fragment-cloud model (FCM) for assessing the atmospheric breakup and energy deposition of asteroids striking Earth. The approach represents ranges of breakup characteristics by combining progressive fragmentation with releases of variable fractions of debris and larger discrete fragments. In this work, we have extended the FCM to also represent asteroids with varied initial structures, such as rubble piles or fractured bodies. We have used the extended FCM to model the Chelyabinsk, Benesov, Kosice, and Tagish Lake meteors, and have obtained excellent matches to energy deposition profiles derived from their light curves. These matches provide validation for the FCM approach, help guide further model refinements, and enable inferences about pre-entry structure and breakup behavior. Results highlight differences in the amount of small debris vs. discrete fragments in matching the various flare characteristics of each meteor. The Chelyabinsk flares were best represented using relatively high debris fractions, while Kosice and Benesov cases were more notably driven by their discrete fragmentation characteristics, perhaps indicating more cohesive initial structures. Tagish Lake exhibited a combination of these characteristics, with lower-debris fragmentation at high altitudes followed by sudden disintegration into small debris in the lower flares. Results from all cases also suggest that lower ablation coefficients and debris spread rates may be more appropriate for the way in which debris clouds are represented in FCM, offering an avenue for future model refinement

    Radiative Heating of Large Meteoroids During Atmospheric Entry

    Get PDF
    A high-fidelity approach for simulating the aerothermodynamic environments of meteor entries was developed, which allows the commonly assumed heat transfer coefficient of 0.1 to be assessed. This model uses chemically reacting computational fluid dynamics (CFD), coupled with radiation transport and surface ablation. Coupled radiation accounts for the impact of radiation on the flowfield energy equations, while coupled ablation explicitly models the injection of ablation products within the flowfield and radiation simulations. For a meteoroid with a velocity of 20 km/s, coupled radiation is shown to reduce the stagnation point radiative heating by over 60%. The impact of coupled ablation (with coupled radiation) is shown to provide at least a 70% reduction in the radiative heating relative to cases with only coupled radiation. This large reduction is partially the result of the low ionization energies of meteoric ablation products relative to air species. The low ionization energies of ablation products, such as Mg and Ca, provide strong photoionization and atomic line absorption in regions of the spectrum that air species do not. MgO and CaO are also shown to provide significant absorption. Turbulence is shown to impact the distribution of ablation products through the shock-layer, which results in up to a 100% increase in the radiative heating downstream of the stagnation point. To create a database of heat transfer coefficients, the developed model was applied to a range of cases. This database considered velocities ranging from 14 to 20 km/s, altitudes ranging from 20 to 50 km, and nose radii ranging from 1 to 100 m. The heat transfer coefficients from these simulations are below 0.045 for the range of cases, for both laminar and turbulent, which is significantly lower than the canonical value of 0:1. When the new heat transfer model is applied to a Tunguska-like 15 Mt entry, the effect of the new model is to lower the height of burst by up to 2 km, depending on assumed entry angle. This, in turn, results in a significantly larger ground damage footprint than when the canonical heating assumption is used
    corecore