A Ground Footprint Eccentricity Model For Asteroid Airbursts

* NASA Ames Research Center, Mail Stop 258-5, Moffett Field CA 94035, United States
${ }^{\dagger}$ RedLine Performance Solutions, NASA Ames Research Center, MS 258-6, Moffett Field, CA 94035, United States

Overview

Uncertainties in early observations of potentially hazardous asteroids result in preliminary impact corridors that can stretch across large portions of the Earth's surface. At this early stage of detection, the corridor width and potential for damage are
typically estimated using techniques from nuclear weapons research. These estimates often employ spherical blast assumptions resulting in a constant width impact corridor (Aftosmis, 2017). In actuality, however, the ground damage footprint of obliquely entering asteroids is generally roughly elliptical or "butterfly" shaped, with the major axis extending in the cross range direction and the minor axis aligned with ground-track of the meteoroid. Since actual ground footprints for oblique entries may have aspect ratios greater than two or three, the assumption of a circular blast may significantly underestimate
the area of the impact swath and the at-risk population. This work develops an engineering model that can be used to quickly the area of the impact swath and the at-risk population. This work develops an engineering model that can be used to quickly
estimate the eccentricity of the ground footprint as a function of local impact parameters. This yields vastly improved local estimates of the corridor width and can significantly enhance the accuracy of risk analysis.

Improving the Risk Corridor

Uncertainties in observations lead to preliminary impact corridors that extend over large portions of the earth's surface
When based on spherical blast approximations, these corridors are often nearly constant width and do not capture the eccentricity of oblique asteroid entries.

Risk corridor for the 2017 IAA Planetary Defense Conference threat exercise colored by local affected population. Corridor width determined by spherical blast methods. (Mathias, 2017)

High-fidelity simulation and glass breakage data showing the ground footprint of the 2013 Chelyabinsk meteor (Aftosmis, 2016).

Approach - Numerical Parametric Studies

Performed parametric study of large-scale 3D airburst simulations to gain insight into key entry parameters driving footprint eccentricity with the entry simulation approach of Aftosmis (2016) Examined ground footprint of 40 meteoroid airbursts varying entry angle, θ, aerodynamic strength, s and kinetic energy at atmospheric entry interface, y, ("yield"); these parameters spanned:
entry angles: $20^{\circ} \leq \theta \leq 90^{\circ}$, aero. strength: $0.01 \leq s \leq 20 \mathrm{MPa}$, entry KE: $0 \leq y \leq 250 \mathrm{MT}$ - Collected data \& extracted aspect ratio of footprint focusing on $4 \& 10$ psi contours (when they exist) Developed an empirical analytic fit of ground footprint eccentricity as a function of entry parameters that can be used in fast-running codes used to generate ground risk corridors

$\left.\xrightarrow\left[\text { 2.2 Increasing Kinetic Energy at Entry Interface (aero. str. }=1.0 \mathrm{MPa} @ \angle 45^{\circ}\right)\right]{\longrightarrow}$ (Rounder footprint)

Observations and Discussion

Entry angle is the main driver. Low angles produce the highest eccentricity and the footprint becomes increasingly circular as entry angle approaches vertical.

- Objects with higher aerodynamic strengths result in more sudden airbursts, resulting in rounder footprints with lower aspect ratios.

Higher kinetic energy at entry interface leads to rounder footprints. Since the blast radius scales with the yield, energy acts as a proxy for the shape of the blast wave, varying from cylindrical (low energy) to round (higher energy). Lower yields give the most eccentric footprints - consistent with intuition that smaller objects tend to produce more cylindrically dominated blasts

- Numerical experiments showed that footprint eccentricity is relatively insensitive to burst height. This allows us to seek an empirical model with only three input parameters (angle, strength \& energy).
- For an ellipse
with
eccentricity, e, is defined
the aspect ratio, $A R$, is $A R=a / b$
$b:=$ Semi-minor axis
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}$

$A R=a / b$
$A R$ is the shape of the rectangle that contains the ellipse

$A R$ is the shape of
the rectangle that
contains the ellipse.
computational meshes with 200-300M cells using NASA's Cart3D simulation tool (Aftosmis, 2016).

An Analytic Footprint Eccentricity Model

$\theta^{\prime}=\min (\max (\theta, 25), 80)$ $\Phi=0.7065\left(1+\cos \left(\left(\theta^{\prime}-25\right) \frac{\pi}{55}\right)\right.$
$\operatorname{AR}(y, s, \Phi)=1+\frac{\Phi}{0.1}$

The model provides an analytic prediction of $A R$ as a function of entry angle, yield, and strength, $\operatorname{AR}(y, s, \Phi)$. The figure shows a slice through this three-parameter space at three entry angles, θ. Data from the calibration set are presented as filled symbols. Lines on the plots show the model predictions for $A R$ as a function of yield.

Kinetic Energy at Entry (MT)

Kinetic Energy at Entry (MT)

Kinetic Energy at Entry (MT)

Outcome

The plot at the right gives a view of the model's predictive performance through comparison with a predictive performance through comparison with a full 3-dimensional entry simulation. The figure shows peak ground overpressure contours for 45° entry of a chondritic asteroid at $20 \mathrm{~km} / \mathrm{s}$. Density was nominally $2.26 \mathrm{~g} / \mathrm{cc}$. The FCM entry modeling code (Wheeler, 2017) predicted peak energy deposition at 17.5 km altitude. The contour plot shows the ground footprint for maximum overpressure expressed in percent of sea level pressure. Contours at 1, 4 and 10 psi are shown with dark blue dashed lines. The 4 psi ellipse predicted by the model $(A R=1.26)$ is shown in cyan (dotted line) and does a good job of shown in cyan (dotted line) and does a good job of overlaying the corresponding contour from the imulation. Predicted aspect ratios are typically within 10% of those from full simulation.

Acknowledgements

This work is a part of the Asteroid Threat Assessment Project (ATAP). The research is funded by the NASA Planetary Defense Coordination Office (PDCO) in the Planetary Science Division of the Science Mission Directorate.

