

Objectives
- Infer asteroid properties (diameter, density, strength, and velocity) from good matches for Chelyabinsk and Tagish

Lake meteors, paying particular attention to diameter.
Automate the matching of measured asteroid energy deposition curves to simulated ones.
Identify the best performing objective function, genetic operators, and genome representation.

- Identify the best performing objective function, genetic operators, and genome representation.

In order to determine the best genetic operators and objective function, we used a synthetic curve to test the GA without FCM's influence. Then, to establish the GA's sensitivity to population size, number of genes, and generation needed as stopping criteria, we show two GA solutions: 1) 7 genes allowed to vary freely and 2) 7 genes allowed to vary while 3 are restricted by published measurements of velocity, density, and entry angle. Furthermore, we tested the combination of GA and FCM using Tagish Lake and Chelyabinsk energy deposition curves using the same methods.

Results

FCM and GA were combined to estimate the asteroids' initial diameter. First, all 7 genes varied freely. Then, using published values of velocity, entry angle, and density [2]-[4], we obtained diameter estimates that not vary significantly-list of restricted values are in the Methodology section. [1] also found that reducing the bulk density for Chelyabinsk led to a better fit. [2] couldn't match the Tagish Lake curve without the use of a porosity model. Case Study: Chelyabinsk

Case Study: Tagish Lake

Gene Evolution for Synthetic Curve with 7 Unknowns:

The GA reveals the error space and how genes evolve. The figures above demonstrate that diameter denotes a surface where only few solutions are possible. This well demarcated surface is contrasted by the scatter plot of strength, angle, and velocity, where there is no recognizable surface.

Discussion and Future Work

- GA selects diameter, velocity, strength, density, and then entry angle, sequentially. Even though the other features vary, diameter is quickly selected and is usually within 25% of the published estimates.
The root-mean-square error (RMSE) dominates at the beginning of evolution but then becomes secondary the GA evolves. Minimizing the RMSE forces the GA to match the curves' main trends, especially focusing on the GA evolves. Minimizing the RMSE forces the GA to match the curves main trends, especially focus the peaks, where main fragmentation occurs, since error is calculated in linear space. Minimizing the
maximum error, known as runout, ensures that the main fragmentation events occur at the heights with the maximum error, kn
Gaussian mutator allows for proper local exploration when steady-state GA starts converging on a solution Gaussian mutator allows for proper local exploration when steady-state GA starts converging on a solution.
When parameters are restricted, the GA has more difficulty matching the curve because it has less freedom to vary parameters to produce better matches.

Future Work

Relax FCM assumptions to include uneven mass distributions, porosity, and distinct ablation coefficients for cloud and fragments.
Run on more cases to see how the GA performs with other energy deposition curves.
Perform sensitivity analysis to ascertain dominating parameters.
Use a gradient-based search after a given generation to refine results.

- Asteroid properties can be inferred, especially diameter at early stages of evolution.
- The GA shows that the equations of motions provide solutions that may not be unique.

