73 research outputs found

    Using digital technologies to facilitate social inclusion during the COVID-19 pandemic: Experiences of co-resident and non-co-resident family carers of people with dementia from DETERMIND-C19

    Get PDF
    Background The COVID-19 pandemic triggered rapid and unprecedented changes in the use of digital technologies to support people's social inclusion. We examined whether and how co-resident and non-co-resident family carers of people with dementia engaged with digital technologies during this period. Methods Throughout November 2020-February 2021, we interviewed 42 family carers of people with dementia from our DETERMIND-C19 cohort. Preliminary analysis was conducted through Framework analysis, followed by an inductive thematic analysis. Findings Digital technologies served as a Facilitator for social inclusion by enabling carers to counter the effects of the differing restrictions imposed on them so they could remain socially connected and form a sense of solidarity, access resources and information, engage in social and cultural activities and provide support and independence in their caring role. However, these experiences were not universal as carers discussed some Challenges for tech inclusion, which included preferences for face-to-face contact, lack of technological literacy and issues associated with the accessibility of the technology. Conclusion Many of the carers engaged with Information and Communication Technologies, and to a lesser extent Assistive Technologies, during the pandemic. Whilst carers experienced different challenges due to where they lived, broadly the use of these devices helped them realise important facets of social inclusion as well as facilitated the support they provided to the person with dementia. However, to reduce the ‘digital divide’ and support the social inclusion of all dementia carers, our findings suggest it is essential that services are attuned to their preferences, needs and technological abilities

    WASP-14b: 7.3 M-J transiting planet in an eccentric orbit

    Get PDF
    We report the discovery of a 7.3 M-J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118-0262485 with a period of 2.243 752 d and orbital eccentricity e = 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 +/- 0.5 M-J and a radius of 1.28 +/- 0.08 R-J. This leads to a mean density of about 4.6 g cm(-3) making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of 160 +/- 20 pc. Spectral analysis of the host star reveals a temperature of 6475 +/- 100 K, log g = 4.07 cm s(-2) and v sin i = 4.9 +/- 1.0 km s(-1), and also a high lithium abundance, log N(Li) = 2.84 +/- 0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gyr

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process
    corecore