36 research outputs found

    The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice

    Get PDF
    Background There is a large body of experimental evidence suggesting that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating immune function. Some studies have shown that these PUFAs might have a beneficial effect in patients suffering form multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system (CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid mediators. In the present study we tested the effect of an endogenously increased n-3 PUFA status on cuprizone-induced CNS demyelination and remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1 mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into n-3 PUFAs. Results CNS lipid profiles in fat-1 mice showed a significant increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic acid levels compared to wt littermates. This was also reflected in significantly higher levels of monohydroxy EPA metabolites such as 18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1 mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of CNS demyelination in both groups; remyelination was increased in the fat-1 group after a recovery period of 2 weeks. However, at p = 0.07 this difference missed statistical significance. Conclusions These results indicate that n-3 PUFAs might have a role in promotion of remyelination after toxic injury to CNS oligodendrocytes. This might occur either via modulation of the immune system or via a direct effect on oligodendrocytes or neurons through EPA- derived lipid metabolites such as 18-HEPE

    Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia

    Get PDF
    Objective: Dyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients. Methods: 40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG < 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa). Results: Mean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed. Conclusions: In adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity

    Bioactive oxylipins in type 2 diabetes mellitus patients with and without hypertriglyceridemia

    Get PDF
    ObjectiveDyslipidemia, in particular elevated triglycerides (TGs) contribute to increased cardiovascular risk in type 2 diabetes mellitus (T2DM). In this pilot study we aimed to assess how increased TGs affect hepatic fat as well as polyunsaturated fatty acid (PUFA) metabolism and oxylipin formation in T2DM patients.Methods40 patients with T2DM were characterized analyzing routine lipid blood parameters, as well as medical history and clinical characteristics. Patients were divided into a hypertriglyceridemia (HTG) group (TG ≥ 1.7mmol/l) and a normal TG group with TGs within the reference range (TG &lt; 1.7mmol/l). Profiles of PUFAs and their oxylipins in plasma were measured by gas chromatography and liquid chromatography/tandem mass spectrometry. Transient elastography (TE) was used to assess hepatic fat content measured as controlled attenuation parameter (CAP) (in dB/m) and the degree of liver fibrosis measured as stiffness (in kPa).ResultsMean value of hepatic fat content measured as CAP as well as body mass index (BMI) were significantly higher in patients with high TGs as compared to those with normal TGs, and correlation analysis showed higher concentrations of TGs with increasing CAP and BMI scores in patients with T2DM. There were profound differences in plasma oxylipin levels between these two groups. Cytochrome P450 (CYP) and lipoxygenase (LOX) metabolites were generally more abundant in the HTG group, especially those derived from arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (γ-LA), and α-linolenic acid (α-LA), and a strong correlation between TG levels and plasma metabolites from different pathways was observed.ConclusionsIn adult patients with T2DM, elevated TGs were associated with increased liver fat and BMI. Furthermore, these patients also had significantly higher plasma levels of CYP- and LOX- oxylipins, which could be a novel indicator of increased inflammatory pathway activity, as well as a novel target to dampen this activity

    Knock-In Mice Expressing a 15-Lipoxygenating Alox5 Mutant Respond Differently to Experimental Inflammation Than Reported Alox5−/− Mice

    Get PDF
    Arachidonic acid 5-lipoxygenase (ALOX5) is the key enzyme in the biosynthesis of pro-inflammatory leukotrienes. We recently created knock-in mice (Alox5-KI) which express an arachidonic acid 15-lipoxygenating Alox5 mutant instead of the 5-lipoxygenating wildtype enzyme. These mice were leukotriene deficient but exhibited an elevated linoleic acid oxygenase activity. Here we characterized the polyenoic fatty acid metabolism of these mice in more detail and tested the animals in three different experimental inflammation models. In experimental autoimmune encephalomyelitis (EAE), Alox5-KI mice displayed an earlier disease onset and a significantly higher cumulative incidence rate than wildtype controls but the clinical score kinetics were not significantly different. In dextran sodium sulfate-induced colitis (DSS) and in the chronic constriction nerve injury model (CCI), Alox5-KI mice performed like wildtype controls with similar genetic background. These results were somewhat surprising since in previous loss-of-function studies targeting leukotriene biosynthesis (Alox5(-/-) mice, inhibitor studies), more severe inflammatory symptoms were observed in the EAE model but the degree of inflammation in DSS colitis was attenuated. Taken together, our data indicate that these mutant Alox5-KI mice respond differently in two models of experimental inflammation than Alox5(-/-) animals tested previously in similar experimental setups

    A Role for Lipid Mediators in Acute Myeloid Leukemia

    No full text
    In spite of therapeutic improvements in the treatment of different hematologic malignancies, the prognosis of acute myeloid leukemia (AML) treated solely with conventional induction and consolidation chemotherapy remains poor, especially in association with high risk chromosomal or molecular aberrations. Recent discoveries describe the complex interaction of immune effector cells, as well as the role of the bone marrow microenvironment in the development, maintenance and progression of AML. Lipids, and in particular omega-3 as well as omega-6 polyunsaturated fatty acids (PUFAs) have been shown to play a vital role as signaling molecules of immune processes in numerous benign and malignant conditions. While the majority of research in cancer has been focused on the role of lipid mediators in solid tumors, some data are showing their involvement also in hematologic malignancies. There is a considerable amount of evidence that AML cells are targetable by innate and adaptive immune mechanisms, paving the way for immune therapy approaches in AML. In this article we review the current data showing the lipid mediator and lipidome patterns in AML and their potential links to immune mechanisms

    Circulating Omega-3 Polyunsaturated Fatty Acids Levels in Coronary Heart Disease: Pooled Analysis of 36 Observational Studies

    No full text
    Long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation has shown potential benefits in the prevention of coronary heart disease (CHD); however, the impact of omega-3 fatty acid levels on CHD risk remains a subject of debate. Here, we aimed to investigate the association between n-3 PUFA levels and the risk of CHD, with particular reference to the subtypes of n-3 PUFA. Methods: Prospective studies and retrospective case-control studies analyzing n-3 PUFA levels in CHD, published up to 30 July 2022, were selected. A random effects meta-analysis was used for pooled assessment, with relative risks (RRs) expressed as 95% confidence intervals (CIs) and standardized mean differences expressed as weight mean differences (WMDs). Subgroup and meta-regression analyses were conducted to assess the impact of n-3 PUFA exposure interval on the CHD subtype variables of the study. Results: We included 20 prospective studies (cohort and nested case-control) and 16 retrospective case-control studies, in which n-3 PUFAs were measured. Higher levels of n-3 PUFAs (ALA, EPA, DPA, DHA, EPA + DHA, total n-3 PUFAs) were associated with a reduced risk of CHD, with RRs (95% CI) of 0.89 (0.81, 0.98), 0.83 (0.72, 0.96); 0.80 (0.67,0.95), 0.75 (0.64, 0.87), 0.83 (0.73, 0.95), and 0.80 (0.70, 0.93), respectively, p n-3 PUFA levels compared to healthy controls (p n-3 PUFA (EPA + DHA) levels. Also, the link between n-3 PUFA levels in erythrocytes with total CHD was generally stronger than other lipid pools. Conclusions: n-3 PUFAs are significantly related to CHD risk, and these findings support the beneficial effects of n-3 PUFAs on CHD

    ω-3 PUFAs in the Prevention and Cure of Inflammatory, Degenerative, and Neoplastic Diseases 2014

    Get PDF
    While still a controversial topic, the omega-3 fatty acids as subject of research have come of age, particularly in recent years. They have made their way from being simple nutrition components, through possibly some exaggerations nominating them as universal tool to improve human health, to being the object of research in a wide variety of preclinical basic-research contexts as well as in smaller and larger clinical studies with mixed results regarding their potential health effects

    n-3 PUFAs in the Prevention and Cure of Inflammatory, Degenerative, and Neoplastic Diseases

    Get PDF
    The possibility of health benefits associated with dietary omega-3 polyunsaturated fatty acids (\u3c9-3 PUFAs) has been described for several chronic conditions, including cardiovascular, neurodegenerative, and neoplastic diseases. A large body of evidence has emerged over the past years to show the critical role played by inflammation in the pathogenesis of these diseases, previously not considered inflammation related. Therefore, it has been recently hypothesized that \u3c9-3 PUFAs\u2019 effects may be related, at least in part, to their direct anti-inflammatory activity as well as to that of their oxygenated metabolites (17-HDHA, 18-HEPE, resolvins, and protectins). In this special issue G. Calviello and collaborators summarize and comprehensively discuss the current knowledge regarding the modulating effects of \u3c9-3 PUFAs on the production of inflammatory cytokines and proresolving or protective lipid mediators in the context of inflammatory, metabolic, neurodegenerative, and neoplastic diseases

    Effects of <i>Moringa oleifera</i> Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types

    No full text
    The seeds of Moringa oleifera (horseradish tree) contain about 40% of one of the most stable vegetable oils (Moringa seed oil). Therefore, the effects of Moringa seed oil on human SZ95 sebocytes were investigated and were compared with other vegetable oils. Immortalized human SZ95 sebocytes were treated with Moringa seed oil, olive oil, sunflower oil, linoleic acid and oleic acid. Lipid droplets were visualized by Nile Red fluorescence, cytokine secretion via cytokine antibody array, cell viability with calcein-AM fluorescence, cell proliferation by real-time cell analysis, and fatty acids were determined by gas chromatography. Statistical analysis was performed by the Wilcoxon matched-pairs signed-rank test, the Kruskal–Wallis test and Dunn’s multiple comparison test. The vegetable oils tested stimulated sebaceous lipogenesis in a concentration-dependent manner. The pattern of lipogenesis induced by Moringa seed oil and olive oil was comparable to lipogenesis stimulated by oleic acid with also similar fatty acid secretion and cell proliferation patterns. Sunflower oil induced the strongest lipogenesis among the tested oils and fatty acids. There were also differences in cytokine secretion, induced by treatment with different oils. Moringa seed oil and olive oil, but not sunflower oil, reduced the secretion of pro-inflammatory cytokines, in comparison to untreated cells, and exhibited a low n-6/n-3 index. The anti-inflammatory oleic acid detected in Moringa seed oil probably contributed to its low levels of pro-inflammatory cytokine secretion and induction of cell death. In conclusion, Moringa seed oil seems to concentrate several desired oil properties on sebocytes, such as high content level of the anti-inflammatory fatty acid oleic acid, induction of similar cell proliferation and lipogenesis patterns compared with oleic acid, lipogenesis with a low n-6/n-3 index and inhibition of secretion of pro-inflammatory cytokines. These properties characterize Moringa seed oil as an interesting nutrient and a promising ingredient in skin care products
    corecore