1,972 research outputs found

    U mobilization and associated U isotope fractionation by sulfur-oxidizing bacteria

    Get PDF
    Uranium (U) contamination of the environment causes high risk to health, demanding for effective and sustainable remediation. Bioremediation via microbial reduction of soluble U(VI) is generating high fractions (>50%) of insoluble non-crystalline U(IV) which, however, might be remobilized by sulfur-oxidizing bacteria. In this study, the efficacy of Acidithiobacillus (At.) ferrooxidans and Thiobacillus (T.) denitrificans to mobilize non-crystalline U(IV) and associated U isotope fractionation were investigated. At. ferrooxidans mobilized between 74 and 91% U after 1 week, and U mobilization was observed for both, living and inactive cells. Contrary to previous observations, no mobilization by T. denitrificans could be observed. Uranium mobilization by At. ferrooxidans did not cause U isotope fractionation suggesting that U isotope ratio determination is unsuitable as a direct proxy for bacterial U remobilization. The similar mobilization capability of active and inactive At. ferrooxidans cells suggests that the mobilization is based on the reaction with the cell biomass. This study raises doubts about the long-term sustainability of in-situ bioremediation measures at U-contaminated sites, especially with regard to non-crystalline U(IV) being the main component of U bioremediation

    Finite-sample system identification: An overview and a new correlation method

    Get PDF
    Finite-sample system identification algorithms can be used to build guaranteed confidence regions for unknown model parameters under mild statistical assumptions. It has been shown that in many circumstances these rigorously built regions are comparable in size and shape to those that could be built by resorting to the asymptotic theory. The latter sets are, however, not guaranteed for finite samples and can sometimes lead to misleading results. The general principles behind finite-sample methods make them virtually applicable to a large variety of even nonlinear systems. While these principles are simple enough, a rigorous treatment of the attendant technical issues makes the corresponding theory complex and not easy to access. This is believed to be one of the reasons why these methods have not yet received widespread acceptance by the identification community and this letter is meant to provide an easy access point to finite-sample system identification by presenting the fundamental ideas underlying these methods in a simplified manner. We then review three (classes of) methods that have been proposed so far-1) Leave-out Sign-dominant Correlation Regions (LSCR); 2) Sign-Perturbed Sums (SPS); 3) Perturbed Dataset Methods (PDMs). By identifying some difficulties inherent in these methods, we also propose in this letter a new sign-perturbation method based on correlation which overcome some of these difficulties

    Rabies: an evidence-based approach to management

    Get PDF
    Human rabies in South Africa is largely due to infection with the classical rabies virus (genotype 1), with the yellow mongoose the commonest vector except in KwaZulu-Natal, Eastern Cape, Mpumalanga and now Limpopo provinces where the dog is predominantly responsible for most bites. Rabies is always fatal in humans but can be prevented by timeous administration of post exposure prophylaxis( PEP). This article discusses an evidence-based approach to rabies management in South Africa. South African Family Practice Vol. 49 (7) 2007: pp. 35-4

    Vacancy complexes with oversized impurities in Si and Ge

    Get PDF
    In this paper we examine the electronic and geometrical structure of impurity-vacancy complexes in Si and Ge. Already Watkins suggested that in Si the pairing of Sn with the vacancy produces a complex with the Sn-atom at the bond center and the vacancy split into two half vacancies on the neighboring sites. Within the framework of density-functional theory we use two complementary ab initio methods, the pseudopotential plane wave (PPW) method and the all-electron Kohn-Korringa-Rostoker (KKR) method, to investigate the structure of vacancy complexes with 11 different sp-impurities. For the case of Sn in Si, we confirm the split configuration and obtain good agreement with EPR data of Watkins. In general we find that all impurities of the 5sp and 6sp series in Si and Ge prefer the split-vacancy configuration, with an energy gain of 0.5 to 1 eV compared to the substitutional complex. On the other hand, impurities of the 3sp and 4sp series form a (slightly distorted) substitutional complex. Al impurities show an exception from this rule, forming a split complex in Si and a strongly distorted substitutional complex in Ge. We find a strong correlation of these data with the size of the isolated impurities, being defined via the lattice relaxations of the nearest neighbors.Comment: 8 pages, 4 bw figure

    Background Independence and Asymptotic Safety in Conformally Reduced Gravity

    Full text link
    We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent renormalization group (RG) flow the coarse graining operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG flow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity in the ``conformally reduced'' Einstein--Hilbert approximation which discards all degrees of freedom contained in the metric except the conformal one. Without the extra field dependence the resulting RG flow is that of a simple Ď•4\phi^4-theory. Including it one obtains a flow with exactly the same qualitative properties as in the full Einstein--Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety.Comment: 4 figures

    Mantle-derived trace element variability in olivines and their melt inclusions

    Get PDF
    Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.</p

    On the Possibility of Quantum Gravity Effects at Astrophysical Scales

    Get PDF
    The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod. Phys. D special issue on dark matter and dark energ
    • …
    corecore