135 research outputs found

    Fluctuation Spectra and Force Generation in Non-equilibrium Systems

    Full text link
    Many biological systems are appropriately viewed as passive inclusions immersed in an active bath: from proteins on active membranes to microscopic swimmers confined by boundaries. The non-equilibrium forces exerted by the active bath on the inclusions or boundaries often regulate function, and such forces may also be exploited in artificial active materials. Nonetheless, the general phenomenology of these active forces remains elusive. We show that the fluctuation spectrum of the active medium, the partitioning of energy as a function of wavenumber, controls the phenomenology of force generation. We find that for a narrow, unimodal spectrum, the force exerted by a non-equilibrium system on two embedded walls depends on the width and the position of the peak in the fluctuation spectrum, and oscillates between repulsion and attraction as a function of wall separation. We examine two apparently disparate examples: the Maritime Casimir effect and recent simulations of active Brownian particles. A key implication of our work is that important non-equilibrium interactions are encoded within the fluctuation spectrum. In this sense the noise becomes the signal

    Morphological instability of a nonequilibrium icecolloid interface

    Get PDF
    We assess the morphological stability of a nonequilibrium icecolloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed which takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included the interface is shown to be unstable to travelling waves. The potential for traveling wave modes reveals a possible mechanism for the polygonal and spiral ice lenses observed in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results for the frost susceptibility of soils and the fabrication of microtailored porous materials

    Grain boundary melting in ice

    Full text link
    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qsq_s and solute concentrations can potentially dominate the film thickness, we can not directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qsq_s dependent limits; one is dominated by the colligative effect and one is dominated by electrostatic interactions.Comment: 6 pages, 5 figure

    Ice-lens formation and connement-induced supercooling in soils and other colloidal materials

    Get PDF
    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the confinement-induced supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with experiments. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates

    A direct optical method for the study of grain boundary melting

    Full text link
    The structure and evolution of grain boundaries underlies the nature of polycrystalline materials. Here we describe an experimental apparatus and light reflection technique for measuring disorder at grain boundaries in optically clear material, in thermodynamic equilibrium. The approach is demonstrated on ice bicrystals. Crystallographic orientation is measured for each ice sample. The type and concentration of impurity in the liquid can be controlled and the temperature can be continuously recorded and controlled over a range near the melting point. The general methodology is appropriate for a wide variety of materials.Comment: 8 pages, 8 figures, updated with minor changes made to published versio

    Interfacial waves in the presence of wind and current: an asymptotic study

    Full text link
    We use asymptotic methods to study the evolution of short wavelength interfacial waves driven by the combined action of wind and current. We solve the Rayleigh equation for the stability of the shear flow, and construct a uniformly valid approximation for the perturbed streamfunction, or eigenfunction. We then expand the real part of the eigenvalue, the phase speed, in a power series of the inverse wavenumber and show that the imaginary part is exponentially small. We give expressions for the growth rates of the Miles (1957) and rippling (e.g., Young & Wolfe 2013) instabilities that are valid for an arbitrary shear flow. The accuracy of the results is demonstrated by a comparison with the exact solution of the eigenvalue problem in the case when both the wind and the current have an exponential profile

    In tribute to Keith Hanley

    Get PDF

    Solution of the Fokker-Planck equation with a logarithmic potential and mixed eigenvalue spectrum

    Full text link
    Motivated by a problem in climate dynamics, we investigate the solution of a Bessel-like process with negative constant drift, described by a Fokker-Planck equation with a potential V(x) = - [b \ln(x) + a\, x], for b>0 and a<0. The problem belongs to a family of Fokker-Planck equations with logarithmic potentials closely related to the Bessel process, that has been extensively studied for its applications in physics, biology and finance. The Bessel-like process we consider can be solved by seeking solutions through an expansion into a complete set of eigenfunctions. The associated imaginary-time Schroedinger equation exhibits a mix of discrete and continuous eigenvalue spectra, corresponding to the quantum Coulomb potential describing the bound states of the hydrogen atom. We present a technique to evaluate the normalization factor of the continuous spectrum of eigenfunctions that relies solely upon their asymptotic behavior. We demonstrate the technique by solving the Brownian motion problem and the Bessel process both with a negative constant drift. We conclude with a comparison with other analytical methods and with numerical solutions.Comment: 21 pages, 8 figure

    Axisymmetric viscous gravity currents flowing over a porous medium

    Get PDF
    We study the axisymmetric propagation of a viscous gravity current over a deep porous medium into which it also drains. A model for the propagation and drainage of the current is developed and solved numerically in the case of constant input from a point source. In this case, a steady state is possible in which drainage balances the input, and we present analytical expressions for the resulting steady profile and radial extent. We demonstrate good agreement between our experiments, which use a bed of vertically aligned tubes as the porous medium, and the theoretically predicted evolution and steady state. However, analogous experiments using glass beads as the porous medium exhibit a variety of unexpected behaviours, including overshoot of the steady-state radius and subsequent retreat, thus highlighting the importance of the porous medium geometry and permeability structure in these systems.Comment: 11 pages, 6 figures, 1 tabl
    • …
    corecore