53 research outputs found

    Characterisation of Osteopontin in an In Vitro Model of Embryo Implantation

    Get PDF
    At the onset of pregnancy, embryo implantation is initiated by interactions between the endometrial epithelium and the outer trophectoderm cells of the blastocyst. Osteopontin (OPN) is expressed in the endometrium and is implicated in attachment and signalling roles at the embryo–epithelium interface. We have characterised OPN in the human endometrial epithelial Ishikawa cell line using three different monoclonal antibodies, revealing at least nine distinct molecular weight forms and a novel secretory pathway localisation in the apical domain induced by cell organisation into a confluent epithelial layer. Mouse blastocysts co-cultured with Ishikawa cell layers served to model embryo apposition, attachment and initial invasion at implantation. Exogenous OPN attenuated initial, weak embryo attachment to Ishikawa cells but did not affect the attainment of stable attachment. Notably, exogenous OPN inhibited embryonic invasion of the underlying cell layer, and this corresponded with altered expression of transcription factors associated with differentiation from trophectoderm (Gata2) to invasive trophoblast giant cells (Hand1). These data demonstrate the complexity of endometrial OPN forms and suggest that OPN regulates embryonic invasion at implantation by signalling to the trophectoder

    Osmotic stress induces JNK-dependent embryo invasion in a model of implantation

    Get PDF
    In vitro culture during assisted reproduction technologies (ARTs) exposes pre-implantation embryos to environmental stressors, such as non-physiological nutritional, oxidative and osmotic conditions. The effects on subsequent implantation are not well understood but could contribute to poor ART efficiency and outcomes. We have used exposure to hyperosmolarity to investigate the effects of stress on the ability of embryos to interact with endometrial cells in an in vitro model. Culturing mouse blastocysts for 2 h in medium with osmolarity raised by 400 mosmol induced blastocoel collapse and re-expansion, but did not affect subsequent attachment to, or invasion of, the endometrial epithelial Ishikawa cell line. Inhibition of stress-responsive c-Jun N-terminal kinase (JNK) activity with SP600125 did not affect the intercellular interactions between these embryos and the epithelial cells. Four successive cycles of hyperosmotic stress at E5.5 had no effect on attachment, but promoted embryonic breaching of the epithelial cell layer by trophoblast giant cells in a JNK-dependent manner. These findings suggest that acute stress at the blastocyst stage may promote trophoblast breaching of the endometrial epithelium at implantation and implicates stress signalling through JNK in the process of trophectoderm differentiation into the invasive trophoblast necessary for the establishment of pregnancy. The data may lead to increased understanding of factors governing ART success rates and safety

    Apposition to endometrial epithelial cells activates mouse blastocysts for implantation.

    Get PDF
    How do interactions between blastocyst-stage embryos and endometrial epithelial cells regulate the early stages of implantation in an in vitro model?Mouse blastocyst apposition with human endometrial epithelial cells initiates trophectoderm differentiation to trophoblast, which goes on to breach the endometrial epithelium.In vitro models using mouse blastocysts and human endometrial cell lines have proven invaluable in the molecular characterisation of embryo attachment to endometrial epithelium at the onset of implantation. Genes involved in embryonic breaching of the endometrial epithelium have not been investigated in such in vitro models.This study used an established in vitro model of implantation to examine cellular and molecular interactions during blastocyst attachment to endometrial epithelial cells.Mouse blastocysts developed from embryonic day (E) 1.5 in vitro were hatched and co-cultured with confluent human endometrial adenocarcinoma-derived Ishikawa cells in serum-free medium. A scale of attachment stability based on blastocyst oscillation upon agitation was devised. Blastocysts were monitored for 48 h to establish the kinetics of implantation, and optical sectioning using fluorescence microscopy revealed attachment and invasion interfaces. Quantitative PCR was used to determine blastocyst gene expression. Data from a total of 680 mouse blastocysts are reported, with 3-6 experimental replicates. T-test and ANOVA analyses established statistical significance at P < 0.05, P < 0.01 and P < 0.001.Hatched E4.5 mouse blastocysts exhibited weak attachment to confluent Ishikawa cells over the first 24 h of co-culture, with intermediate and stable attachment occurring from 28 h (E5.5 + 4 h) in a hormone-independent manner. Attached embryos fixed after 48 h (E6.5) frequently exhibited outgrowths, characterised morphologically and with antibody markers as trophoblast giant cells (TGCs), which had breached the Ishikawa cell layer. Beginning co-culture at E5.5 also resulted in intermediate and stable attachment from E5.5 + 4 h; however, these embryos did not go on to breach the Ishikawa cell layer, even when co-culture was extended to E7.5 (P < 0.01). Blastocysts cultured from E4.5 in permeable transwell inserts above Ishikawa cells before transfer to direct co-culture at E5.5 went on to attach but failed to breach the Ishikawa cell layer by E6.5 (P < 0.01). Gene expression analysis at E5.5 demonstrated that direct co-culture with Ishikawa cells from E4.5 resulted in downregulation of trophectoderm transcription factors Cdx2 (P < 0.05) and Gata3 (P < 0.05) and upregulation of the TGC transcription factor Hand1 (P < 0.05). Co-culture with non-endometrial human fibroblasts did not alter the expression of these genes.None.The in vitro model used here combines human carcinoma-derived endometrial cells with mouse embryos, in which the cellular interactions observed may not fully recapitulate those in vivo. The data gleaned from such models can be regarded as hypothesis-generating, and research is now needed to develop more sophisticated models of human implantation combining multiple primary endometrial cell types with surrogate and real human embryos.This study implicates blastocyst apposition to endometrial epithelial cells as a critical step in trophoblast differentiation required for implantation. Understanding this maternal regulation of the embryonic developmental programme may lead to novel treatments for infertility.This work was supported by funds from the charities Wellbeing of Women (RG1442) and Diabetes UK (15/0005207), and studentship support for SCB from the Anatomical Society. No conflict of interest is declared

    The glycosyltransferase EOGT regulates adropin expression in decidualizing human endometrium

    Get PDF
    In pregnancy, resistance of endometrial decidual cells to stress signals is critical for the integrity of the feto-maternal interface and, by extension, survival of the conceptus. O-GlcNAcylation is an essential post-translational modification that links glucose sensing to cellular stress resistance. Unexpectedly, decidualization of primary endometrial stromal cells (EnSCs) was associated with a 60% reduction in O-GlcNAc modified proteins, reflecting downregulation of the enzyme that adds O-GlcNAc to substrates (O-GlcNAc transferase, OGT) but not the enzyme that removes the modification (O-GlcNAcase, OGA). Notably, EOGT, an endoplasmic reticulum-specific O-GlcNAc transferase that modifies a limited number of secreted and membrane proteins, was markedly induced in differentiating EnSCs. Knockdown of EOGT perturbed a network of decidual genes involved in multiple cellular functions. The most downregulated gene upon EOGT knockdown in decidualizing cells was ENHO, which encodes adropin, a metabolic hormone involved in energy homeostasis and glucose and fatty acid metabolism. Analysis of mid-luteal endometrial biopsies revealed an inverse correlation between endometrial EOGT and ENHO expression and body mass index. Taken together, our findings reveal that obesity impairs the EOGT-adropin axis in decidual cells, which in turn points towards a novel mechanistic link between metabolic disorders and adverse pregnancy outcome. [Abstract copyright: Copyright © 2017 Endocrine Society.

    Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation

    Get PDF
    The rapid rise in obesity, metabolic syndrome and type 2 diabetes is one of the major healthcare problems of the Western world. Affected individuals are often treated with statins (3-hydroxy-3-methylglutaryl co-enzyme A [HMG CoA] reductase inhibitors) to reduce circulating cholesterol levels and the risk of developing cardiovascular disease; given the evolving demographic profile of these conditions, such drugs are increasingly prescribed to women of reproductive age. We have previously shown that exposure of placental tissue to statins inhibits the action of insulin-like growth factors (IGF)-I and -II which are key regulators of trophoblast proliferation and placental development. N-linked glycans in the IGF receptor, IGF1R, influence its presentation at the cell surface. This study aimed to determine whether statins, which are known to affect N-glycosylation, modulate IGF1R function in placenta. Treatment of first trimester villous tissue explants with statins (pravastatin or cerivastatin) or inhibitors of N-glycosylation (tunicamycin, deoxymannojirimycin or castanospermine) altered receptor distribution in trophoblast and attenuated proliferation induced by IGF-I or IGF-II (Ki67; P < 0.05, n = 5). Decreased binding of Phaseolus vulgaris lectin and phytohaemagglutinin to IGF1R immunoprecipitated from treated explants demonstrated reduced levels of complex N-linked glycans. Co-incubation of tissue explants with statins and farnesyl pyrophosphate (which increases the supply of dolichol intermediates), prevented statin-mediated disruption of IGF1R localization and reversed the negative effect on IGF-mediated trophoblast proliferation. These data suggest that statins attenuate IGF actions in the placenta by inhibiting N-linked glycosylation and subsequent expression of mature IGF1R at the placental cell surface

    Family and Neighbourhood Socioeconomic Inequalities in Childhood Trajectories of BMI and Overweight: Longitudinal Study of Australian Children

    Get PDF
    Background:Socioeconomic inequalities in longitudinal patterning of childhood overweight could cause marked differentials in total burden by adulthood. This study aims to determine timing and strength of the association between socioeconomic status (SES) and children's body mass index (BMI) in the pre- and primary school years, and to examine socioeconomic differences in overweight trajectories across childhood.Methods:Participants were 4949 children from the Longitudinal Study of Australian Children. BMI was measured at four biennial waves starting at age 4-5 years in 2004. Developmental trajectories of childhood overweight were identified with latent class analyses. Composite variables of family and neighbourhood SES were used.Results:Socioeconomic differences in mean BMI z-scores already present at age 4-5 more than doubled by age 10-11 years, reflecting decreasing mean BMI among advantaged rather than increasing means among disadvantaged children. Latent class analysis identified children with 'stable normal weight' (68%), and with 'persistent' (15%), 'late-onset' (14%), and 'resolving' overweight (3%). Risks of persistent and late-onset childhood overweight were highest among low SES families (e.g. most disadvantaged quintile: ORpersistent= 2.51, 95%CI: 1.83-3.43), and only partly explained by birth weight and parental overweight. Relationships with neighbourhood SES were weaker and attenuated fully on adjustment for family SES. No socioeconomic gradient was observed for resolving overweight.Conclusions:Childhood has become the critical period when socioeconomic inequalities in overweight emerge and strengthen. Although targeting disadvantaged children with early overweight must be a top priority, the presence of childhood overweight even among less-disadvantaged families suggests only whole-society approaches will eliminate overweight-associated morbidity

    Can improving working memory prevent academic difficulties? A school based randomised controlled trial.

    Get PDF
    BACKGROUND: Low academic achievement is common and is associated with adverse outcomes such as grade repetition, behavioural disorders and unemployment. The ability to accurately identify these children and intervene before they experience academic failure would be a major advance over the current 'wait to fail' model. Recent research suggests that a possible modifiable factor for low academic achievement is working memory, the ability to temporarily store and manipulate information in a 'mental workspace'. Children with working memory difficulties are at high risk of academic failure. It has recently been demonstrated that working memory can be improved with adaptive training tasks that encourage improvements in working memory capacity. Our trial will determine whether the intervention is efficacious as a selective prevention strategy for young children at risk of academic difficulties and is cost-effective. METHODS/DESIGN: This randomised controlled trial aims to recruit 440 children with low working memory after a school-based screening of 2880 children in Grade one. We will approach caregivers of all children from 48 participating primary schools in metropolitan Melbourne for consent. Children with low working memory will be randomised to usual care or the intervention. The intervention will consist of 25 computerised working memory training sessions, which take approximately 35 minutes each to complete. Follow-up of children will be conducted at 6, 12 and 24 months post-randomisation through child face-to-face assessment, parent and teacher surveys and data from government authorities. The primary outcome is academic achievement at 12 and 24 months, and other outcomes include child behaviour, attention, health-related quality of life, working memory, and health and educational service utilisation. DISCUSSION: A successful start to formal learning in school sets the stage for future academic, psychological and economic well-being. If this preventive intervention can be shown to be efficacious, then we will have the potential to prevent academic underachievement in large numbers of at-risk children, to offer a ready-to-use intervention to the Australian school system and to build international research partnerships along the health-education interface, in order to carry our further studies of effectiveness and generalisability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore