4,198 research outputs found

    Viscous vortex flows

    Get PDF
    Several computational studies are currently being pursued that focus on various aspects of representing the entire lifetime of the viscous trailing vortex wakes generated by an aircraft. The formulation and subsequent near-wing development of the leading-edge vortices formed by a delta wing are being calculated at modest Reynolds numbers using a three-dimensional, time-dependent Navier-Stokes code. Another computational code was developed to focus on the roll-up, trajectory, and mutual interaction of trailing vortices further downstream from the wing using a two-dimensional, time-dependent, Navier-Stokes algorithm. To investigate the effect of a cross-wind ground shear flow on the drift and decay of the far-field trailing vortices, a code was developed that employs Euler equations along with matched asymptotic solutions for the decaying vortex filaments. And finally, to simulate the conditions far down stream after the onset of the Crow instability in the vortex wake, a full three-dimensional, time-dependent Navier-Stokes code was developed to study the behavior of interacting vortex rings

    Climb-dash real-time calculations

    Get PDF
    On-board rear-optimal climb-dash energy management, optimal symmetric flight with an intermediate vehicle model, and energy states are presented

    Optimal symmetric flight studies

    Get PDF
    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory

    The Entanglement Entropy of Solvable Lattice Models

    Full text link
    We consider the spin k/2 analogue of the XXZ quantum spin chain. We compute the entanglement entropy S associated with splitting the infinite chain into two semi-infinite pieces. In the scaling limit, we find S ~ c_k/6 (ln(xi))+ln(g)+... . Here xi is the correlation length and c_k=3k/(k+2) is the central charge associated with the sl_2 WZW model at level k. ln(g) is the boundary entropy of the WZW model. Our result extends previous observations and suggests that this is a simple and perhaps rather general way both of extracting the central charge of the ultraviolet CFT associated with the scaling limit of a solvable lattice model, and of matching lattice and CFT boundary conditions.Comment: 6 pages; connection with boundary entropy of Affleck and Ludwig added in revised version and notation slightly change

    Repetition and difference: Lefebvre, Le Corbusier and modernity's (im)moral landscape: a commentary

    Get PDF
    This article engages with the relationship between social theory, architectural theory and material culture. The article is a reply to an article in a previous volume of the journal in question (Smith, M. (2001) ‘Repetition and difference: Lefebvre, Le Corbusier and modernity’s (im)moral landscape’, Ethics, Place and Environment, 4(1), 31-34) and, consequently, is also a direct engagement with another academic's scholarship. It represents a critique of their work as well as a recasting of their ideas, arguing that the matter in question went beyond interpretative issues to a direct critique of another author's scholarship on both Le Corbusier and Lefebvre. A reply to my article from the author of the original article was carried in a later issue of the journal (Smith, M. (2002) ‘Ethical Difference(s): a Response to Maycroft on Le Corbusier and Lefebvre’, Ethics, Place and Environment, 5(3), 260-269)

    Bi-partite entanglement entropy in integrable models with backscattering

    Get PDF
    In this paper we generalise the main result of a recent work by J. L. Cardy and the present authors concerning the bi-partite entanglement entropy between a connected region and its complement. There the expression of the leading order correction to saturation in the large distance regime was obtained for integrable quantum field theories possessing diagonal scattering matrices. It was observed to depend only on the mass spectrum of the model and not on the specific structure of the diagonal scattering matrix. Here we extend that result to integrable models with backscattering (i.e. with non-diagonal scattering matrices). We use again the replica method, which connects the entanglement entropy to partition functions on Riemann surfaces with two branch points. Our main conclusion is that the mentioned infrared correction takes exactly the same form for theories with and without backscattering. In order to give further support to this result, we provide a detailed analysis in the sine-Gordon model in the coupling regime in which no bound states (breathers) occur. As a consequence, we obtain the leading correction to the sine-Gordon partition function on a Riemann surface in the large distance regime. Observations are made concerning the limit of large number of sheets.Comment: 22 pages, 2 figure

    Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories

    Get PDF
    This paper is a review of the main results obtained in a series of papers involving the present authors and their collaborator J L Cardy over the last 2 years. In our work, we have developed and applied a new approach for the computation of the bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories. In most of our work we have also considered these theories to be integrable. Our approach combines two main ingredients: the 'replica trick' and form factors for integrable models and more generally for massive quantum field theory. Our basic idea for combining fruitfully these two ingredients is that of the branch-point twist field. By the replica trick, we obtained an alternative way of expressing the entanglement entropy as a function of the correlation functions of branch-point twist fields. On the other hand, a generalization of the form factor program has allowed us to study, and in integrable cases to obtain exact expressions for, form factors of such twist fields. By the usual decomposition of correlation functions in an infinite series involving form factors, we obtained exact results for the infrared behaviours of the bi-partite entanglement entropy, and studied both its infrared and ultraviolet behaviours for different kinds of models: with and without boundaries and backscattering, at and out of integrability

    The Peculiar Multi-Wavelength Evolution Of V1535 Sco

    Full text link
    We present multi-wavelength observations of the unusual nova V1535 Sco throughout its outburst in 2015. Early radio observations were consistent with synchrotron emission, and early X-ray observations revealed the presence of high-energy (>1 keV) photons. These indicated that strong shocks were present during the first ~2 weeks of the nova's evolution. The radio spectral energy distribution was consistent with thermal emission from week 2 to week 6. Starting in week 7, the radio emission again showed evidence of synchrotron emission and there was an increase in X-ray emission, indicating a second shock event. The optical spectra show evidence for at least two separate outflows, with the faster outflow possibly having a bipolar morphology. The optical and near infrared light curves and the X-ray measurements of the hydrogen column density indicated that the companion star is likely a K giant.Comment: 20 pages, 13 figures, under review at ApJ, updated to match the most recent version submitted to the refere

    Metric trees of generalized roundness one

    Full text link
    Every finite metric tree has generalized roundness strictly greater than one. On the other hand, some countable metric trees have generalized roundness precisely one. The purpose of this paper is to identify some large classes of countable metric trees that have generalized roundness precisely one. At the outset we consider spherically symmetric trees endowed with the usual combinatorial metric (SSTs). Using a simple geometric argument we show how to determine decent upper bounds on the generalized roundness of finite SSTs that depend only on the downward degree sequence of the tree in question. By considering limits it follows that if the downward degree sequence (d0,d1,d2...)(d_{0}, d_{1}, d_{2}...) of a SST (T,ρ)(T,\rho) satisfies {jdj>1}=0|\{j \, | \, d_{j} > 1 \}| = \aleph_{0}, then (T,ρ)(T,\rho) has generalized roundness one. Included among the trees that satisfy this condition are all complete nn-ary trees of depth \infty (n2n \geq 2), all kk-regular trees (k3k \geq 3) and inductive limits of Cantor trees. The remainder of the paper deals with two classes of countable metric trees of generalized roundness one whose members are not, in general, spherically symmetric. The first such class of trees are merely required to spread out at a sufficient rate (with a restriction on the number of leaves) and the second such class of trees resemble infinite combs.Comment: 14 pages, 2 figures, 2 table
    corecore