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SUMMARY

The present report consists of three AIAA papers concerning research
carried out under NASA Grant NAG 1-203 during the pericd 1 July 1982 to 30
June 1982. Technical monitors on this research work were Dr. Douglas Price
and Dr. Christopher Gracey of NASA-Langley's Theoretical Mechanics Branch.

The papers are as follows:
On-Board Rear-Optimal Climb-Dash Energy Management, A. R. Weston,
E. M. Cliff and H. J. Kelley, presented at the Americal Control Conference

San Francisco, California, June 22-24, 1983.

Optimal Symmetric Flight with an Intermediate Vehicle Model, P. K. A.
Menon, H. J. Kelley und E. M. Cliff, for presentation at the AIAA

Guidance and Control Conference, Gatlinburg, Tennessee, August 15-17, 1983. zt

§
Energy State Revisited, H. J. Kelley, E. M. C1iff and A. R. Weston, v
for presentation at the AIAA Atmospheric Flight Mechanics Conference, ‘j
Gatlinburg, Tennessee, August 15-17, 1983. ga
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ON-BOARD NE/R-U?TIMAL CLIMB-DASH ENERGY MANAGEMENT

A, R, Heston
£, M, CIFF

He ds Kelleyz
Aerospace and Ocean Engineering Department

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

The subject of this paper is the study of optimal
and near-optimal trajectories of high-performance
fighter aircraft in symmetric fifght, On-board, real-
time, near-optimal guidance 1s considered for the
climb-dash mission, using some of the boundary-layer
structure and hierarchical ideas from singular per-
turbations. In the case of symmetric flight this re-
sembles nelghboring-optimal guidance using energy-to-
go as the running variable., However, extension to
3-D flight is proposed, using families of nominal
paths with heading-to-go as the additiona) running
variable. Some computatfonal results are presented
for the symmetric case,

Introduction

On-board, real-time guidance 15 constrained by
the 1imited computational resources available, par-
ticularly on fighter atrcraft, where space and weight
are at a premium., As a result the algorithms employed
must be simple to implement and have small storage re-
quirements, The objective of the presently described
effort is to investigate practical algorithms for a
variety of missfons in 3-D flight, In the present
paper anapproach 1sdeveloped for the intercept mission
in symmetric flight based on a concept, sketched in
Ref, 1, in which extensive numerical computation §s
required on the ground prior to the mission, but the
on-board execution is simple, The scheme takes ad-
vantage of the boundary-layer structure common in
singular perturbations, studfed in Ref, {2), arising
with the multiple time scales appropriate to afrcraft
dynamics, Energy modelling of aircraft, as fipst
examined in Refs, (3-5) and extensively developed in
Ref, (6,7) is used as the starting point for the
analysis, In the symmetric case, a nominal path is
generated which fairs into the dash or cruise state,
Feedback coefficients are found as functions of the
energy~to-go, (dash energy less actual energy), along
the nominal path. These serve to generate transitions
towards the nominal path,closed-1o00p, and to counter
disturbances. In this situation the guidance method
is similar to the neighboring-optimal guidance methods
of Refs, (8-16{. However there are two significant
differences: 1n the present work the gain indexing
is done in terms of the current energy; this avoids
problems encountered in estimating the index time.
Further extension to 3-D flight is considered here
where families of reference paths would replace a
single trajectory, with heading-to-go as the addition-
al running variable,

Nomenclature

Cd Drag Coefficient
Cdo Zero-Lift Drag Coefficient
’ Research Associate

Professor

Lift Coefficient

ywﬂiE
Specific Energy
AQtitude

Lift

Mass

Fuel Flow Rate
Thrust

Velocity
Downrange
Crossrange

Flight-path Angle
Throttle Coefficient -
Bank Angle
Heading An?]e
Interpolation Parumeter

o
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Problem Formulation

The overall objective is to develop an on-board,
real-time near-optimal flight-control system in 3-D
for a variety of missions and for arbitrary initial
conditions, The example developed here 1s for the
climb-dash intercept mission in 2-D. The equations of
mo?égn for a point-mass model of an afrgraft can be
written:

£ = V(aT-D)/H (1)
ho=Vsiny {2)
i = (L cos ¢~ W cosy)/mV (3)
x = Vcosy (4)

The following assumptions are embodied: fixed mass,
thrust along the path, flight over a fiat earth, and
no winds aloft,

Aerodynami¢ Modelling

The afrcraft which is used as an example to per-
form numerical calculations is a high-performance
interceptor. The drag is modelled as a parabolic
function of the control:

2
Cg=Cqo *KEG
The thrust is a function of Mach number and altitude;
it s stored using the spline-lattice technique of Ref.
17. The flight envelope is shown in Fig. 1,

Reduced~Order Modelling

Order reduction, based on observed or assumed time-
scale separations, Is attractive in solving flight
vehicle control problems, This is not only due to the
smaller number of states and unknown initial conditions
but more significantly to improvement of the condition-
ing of the system of differential equations by the
confinement of the more unstable dynanics to
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boundary=1ayer corrections, It has been agpreciated
since the work of Ref, 3 that h and v can be chan?ed
much faster than E, which in turn is a 'fast' variable
in comparison to the range, This leads to the refor-
mulating of the equations of motion, folloging Ref, €,
with tha interpolation parameters ¢! and «

Chxysiny (5)
¢ 4w (L~ W Cos y)/m¥ (6)
el & Y(aT - DI/W (7)

%%V ocos v {4)

The introduction of three separate time scales in the
system must conform to the requirement of the T1gonov
theory {Ref, 18) that the ratic (g2/¢}) + 0 as ¢! »
as discussed in Ref, 6, Two resulting possibilities
are now discussed,

Rectilinear-Motion Model

The simplest model is found when ¢! and ¢2 are
raken as 0. The result of these assumptions cn the
iifferential equations are noted:

[h'] [7'0] (8)
5110» -+
Yy=0 LeW (9)

2x0+ E=0 » qTD (10)

These equations embody the assumptions that the

states h,y, E can be varied instantly in a control-
1ike fashion, while n and Cy are chosen to satisfy (9)
and (10), The control-1ike states h, E are chosen to
minimize the Hamiltonian, Ax X. As Ay 15 constant

the min-H operation picks out the dasﬁ point on the
envelope, This is the zeroth-order "outer" solution
of singular-perturbation theory, which the solutions
from other time scales fair into,

Energy-State Models

If ¢} =7, ¢2 = 0 the next level of complexity,
known as energy model1ing, is found, vy and h are
still assumed to be 'control-1ike', and 'fast', while
E is now a 'slow' variabYe. Cg 1s stil11 determined by
eq. (9); h and n are chosen to minimize HeAyX + AEE,
where E {s governed by eq, (3) and Ag by

=4
T BE am

A
n and h are found in terms of the ratio of Ag to Ay
and thetr signs: the ratio determines the relative
importance of range rate and energy rate, while the
signs determine the sense of the optimization, For
example 1f Ag s negative, then n = 1 minimizes H; if
A Is positive then n = 0, If Ax =0 h will maximize
the excess power, leading to an ‘energy-climb' (Refs,
6, 19, 20) 3 the resulting path is shown on the h-V
plane in Fig. 2. This schedule shows multiple Jjumps
in altitude which arise from realistic variations on
the thrust data. This contrasts with other examples
where the altitude jumps are typically due to the
transonic drag-rise (Refs. 19, 20).

In the intercept problem Ay # 0. The "energy climb'
path traced out for Ax = 0 is shown in Fig. 2, where
the path does not fair into the "outer" solution
operation at the dash point. The analysis and com-
putations are more complex: the value of Ag i5 now
pivotal and the initial value of (Ag/rx) will de-
termine the ensuing path. Finding the solution which

fairs ¥nto the dash-point is therefore a two-point-
boundary-value problem in one dimension, solved usin%
the usual 1-D search techniques. This ’'range~optimal-
energy-climb’ 1s shown in Fig, 3, with the enorgy
climb for comparison.

The disadvanta?es of this approach are that it re~
sults in a v approximation of O (whereas ip the climb-
dash problem the actua) angle for a typical high per-
formance fighter may be 1r excess of 45°), and that
{nstantaneous Jumps in the aititude appear at the end-
points, and also are possible during the trajectory,

Singular~-Perturbation Procedure

By the use of singuwlar-perturbation theory,
boundary-layer type correctiuns can be used to over-
come the weaknesses of the energy model, 1.e., initial,
internal, and final jumps 4n altitude. While the
altitude discontinuities are eliminated by expansion
to the zeroth order, nonzero vy values are obtained in
the procedure of Ref, 6 by continuing the expansion to
the first order. This is a nontrivial problem in the
case where the altitude transitions occur at the be-
ainning or the end of a trajectory, and is even more
complex in the case of an internal altitude jump, As
a result, the zeroth-order-corrected energy model loses
its attraction when realistic ys are required for on-
board use as commands,

On-Board Guidance

An alternative to using order reduction, suggested
in Ref. (1), wnich is simple enough to Jend ftself to
on-board implementation 1s now developed, for the case
of symmetric flight, The scheme has yroots in the
hiearchical structure of solutions of the energy model,
in which specific energy 15 a relatively 'slow' vari-
able and its value determines the control-1ike !'fast!
varfables, h and y. This suggests that trajectories
of the point-mass model funnel rapidly intu the vi-
cinity of a single path, which fairs into the dash-
point, The idea pursugd in this and the companion
paper of Ref, 1 1s to determine this 'skeletal path',
for the point-mass model, for as wide a range of
energies as possibje, This is the nominal, or re-
ference, trajectory and the altitude and path-angle
histories are recorded as functions of the energy-to-
go. The siext step 15 to generate a neighboring~
optimal feedback guidance law which will control the
aircraft so as to follow a neighbor of the nominal
optimal path, Linear-feedback coefficients generate
transients which bring the aircraft to the vicinity of
the reference trajectory., The ?u‘dance law 15 a Yinear
feedback control based on the difference between the
nominal and actual altitude and path-angle values, The
coefficients, which correspond to minimizing the second
varfation, as in Refs, (8 &16), are found by ﬁerturbing
the altitude and path angle separately from their nomi-
nal values along the reference trajectory. The cptimal-
control problem is re-solved and the partial derivative
of the control with respect to the states (at fixed
energy) is found in difference-quotient approximation.
The Cy commands which are sent to the autopilot are
taken from the nominal path, with linear corrections
for vartation with altitude and path-angle from their
nominal values:

aC aC
€y = €, 1(E) + 552 (E) (h-h"(R)) + —a—} (E) (y-y'(E)

On-board use for full-throttle :11mb-dash requires
only the storage of the states h™(E} y*(E), the con-

?
trol C,*(E), and the feedback coefficients E?L (€),
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9C
555 (), as functions of the energy or energy~to-go,

Optimal Solutions Using The VFoint-Mass Model

A requirement of the proposed fdea is a Jarge
number of optimal-control solutiuts to the point-mass-
mode)led problem. This can be done by the use of
direct methods, such as gradient methods, where the
control history 1s parameterized by sectionally-~linear
or spline approximation and the terminal conditions
are met by efther penalty or projectis: techniques,
Aternatively the question can be posed as a two-point
boundary v2lize problem with split conditions and
boundary conditions, which can be solved by indirect
methods such as multiple-shooting {Refs. 21, 22), To
solve the problem of time-optimal control, one forms
the variational Hamiltonian:

Hox Ak + xhﬁ t AT+ xxx

and applies the Maximum Principle §Ref. 23, 24)). The
resulting Euler differential equations are:

The 1ift and the th ottle setting mist be chosen (with
the present sign ceavention) to minimize the Hami)ton-
fan, which requirgs that:

M.
i =0

and
nel
(AE < 0)

Method of Solution

Euler sotutions were found in the present effort
by the method of multiple shooting, using the algo-
rithm and computer program of Refs, (14, 25) kindly
supplied by DFVLR, Oberpfaffenhofer, FRG, In this
method, the interval of integration is broken up into
many subintervals. This is preferable to 'simple
shooting’, as optimization problems of 1ifting fiight
are i11-conditiones, the state-Euler system being in-
herently unstable, Partitioning the time interval has
the effect of suppressing numerical-error growth,

This need arises in the calculation of the feedback
gains, found by the difference of the control at the
beginning of two optimal solutions. As a result, to
find the gains to 4 figures the control must be known
to at least 8 figures, The multiple-shooting method
has greater accuracy than the other methods available,
and although it is sometimes difficult to generate the
initial reference trajectory, the subsequent calcu-
lation of the feedback gains is rolatively easy, as
the method has good convergence properties in the
vicinity of a solution,

Optimal Reference Trajectory

The first objective is to generate a reference

optimal path using point-mass model dynamics, over the
widest possible energy range, In the climb-dash
problem being studied, the highest energy corresponds
to that of the hi?h-speed point on the aircraft en=
velope, the dash ‘outer solution'. The lowest energy
corresponds to the trajectory which just kisses the
terrain 1imit, f,e, below this energy, optimal so-
lutions which start at zero altitude would dive below
the <erra’s 1imit 1f it were absent, 7his lower
energy is found by examining the initial load factor
of a family starting from level flight at the terrain
1imit altitude: when the initfal load factor is 1,
this luwer energy is determined, This is shown in

Fig, (4), where the initial load factor is plotted for
severa] diffevent initial energles. Further, as the
clinb {s the boundary layer of the dash "outer" so-
lutfon, it must fafr into the dash state asymptotically,
If 8 finite time 1s used, this is theoretically im-
possible and a final control transient is inevitable
to meet the bourdary conditions; however such tran-
sients can be minimized by picking a ¢limb trajectory
which is Tong enough in duration. A measure of smooth-
ness with which the final approach is made is the fina)
load factor: as the time of flight is increased it is
found that the final load factor approaches 4 value of
1, exponentially, see Fig, 5.

A trajectory of sufficient durution that the fipal
Joad factor is 1,00) is taken as the nomipal path, This
resembles an energy-climb schedule in that the energy
of the ajrcraft determines the optimal ajtitude and
path-angle; in fact the altitude chosen, for the Range-
Optimal-Cnergy Climb is close to »hat from the Euler
Solution at the same energy; Fig, J compares the two
solutions in the V-hh plane, It {s important to note
that 28-decimal-digit precision was required for ruc-
cessful convergence of the multiple-shooting 1trrative
process for the "long" 2-D point-mass Euler Solutions
under discussion,

Feedback Coef™} ‘unts

The feedback coef”izjentt for the neighboring-
optimal guidance schic 2ce nkadod as functions of the
energy-to-go along thz .¢ferenty path, As discussed
earlier, these are found in difference-quotient ap-
proximation as the average of the forwards and back-
wards differences. The gains ave found to be very
large near the final state and the feedback system
correspondingly ‘nervous’., 1In the last foot of
energy~to-go, both of the feedback gains start to grow
exponentially., This sensitivity of neighboring -
optimal-guidance schemes close to the terminal state
has been noted in the 1iterature (Refs. 8-16),

Simulation

Following the satisfattory splining of the nominal
states, controls and feediiack coefficients as functions
of the energy-to-go, the guidance scheme was tested by
running a simulation of the point-mass-model, using the
feedback law, and comparing the resulting trajectory
with an Euler solution which started from the same
initial conditions, With zero disturbance the auto-
pilot was able to follow the nominal path more than
satisfactorily, over the entire range of energies, de-
spite the inevitable errors which arise in the spline
representations and numerical integration. Tests were
performed with the initial altitude disturbed from that
of the nominal path at different energies up to 15000
feet above and below the nominal path. The resulting
trajectories are shown in Figs, 7-12. These show that
the feedback law follows the optimei solution closely,
even when the initial disturbance is far outside of
the range of linearity of the feedback gains.
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implementation

The analysis so far has not taken into account the
varfation in aircrafi wei?ht. 3-D0 fiight, winds aloft,
and nonstandard atmospheric gropertias. The problem
mist be re-solved with variable weiyhts befcre actual
on-board use, Also, winds aloft and temperature vari-
ations could be accounted for by precomputing the
varfation in thi stored varfables using first-order
approximations, A method for enhanced zeroth-order
approximation via specia)l choice of state variables is
described in Ref, 26 and appears compatible with the
present approach,

" gonclusions

The numerfcal results brar out the fol!owln? con-
clusions: first, that all trajectories which fair 1n-
to the high-speed point consist of a rapid transition
onto & reference or skeletal path, 1f they do not
originate on {t. Secondly, the linear~feedback scheme
proposed is able to control the aircraft so that it
closely follows the agproprinte nefghbor of the nominal
path for large perturbations of initia) conditions, A
3-D extension of the computdtional scheme is of in-
terest in which there are two dominant states, i.e.
heading-to-go in addition to energy-to-go, Hs a re~
sult, families of optimal paths which fair into tho
dash-point will be needed, and the feedback coefficients
will be functions of two variables (represented via a
spline lattice) instead of one,
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v OPTIMAL SYMMETRIC FLIGHT WITH KN INTERMEDIATE VEHICLE MODEL¥ g)%ﬁ’ﬁ
ST .

ipat, Frilia i P, K. A, Menon®
ORI SOR QUALITY H. J. Kelley™
OF P £, M, GUIFF™ NB 4 1 G |

Virginia Polytechnic Institute and State University 1 'l 7
. Blacksburg, Virginia
Abstract Intermediste Vehicle Model:
imal flight i : ith a The point-mass dynamical model of sircraft

vehico mode? {ngurmediats X:rgg;g}eggg;ebztween flight fncorpurating the assumption of thrust-along-
point-mass and energy models {5 studied, F11?hc~ the-path 1s given by
path angle takes on the role of a control variable, 1-0)
Range-upen problems feature subarcs of vertical ¢ = g[i—iw - siny] (1)
flight and singular subarcs as previously studied. W

The ¢lass of altitude-speed-range-time optimi~ i * Vsiny (2)
zation problers with fuel expenditure unspecified
is investigated and some interesting phenomena un~- % = Vcosy (3)
covered. The maximum-11ift-to-drag glide appears as N
part of the family, final-time-open, with appropria~ Ww=Q (4)
te 1initfal and terminal transient maneuvers.
family of climb-range paths appears for thrust excee- v o= %-(%-- £0s*) (5)

ding level-f1ight drag, some members exhibiting os-
Sii]gg1znsé fOsc;l]aEgry paths g?nera11y ;a;] tge
acobi test for durations exceeding a period an A
: . Here V {s airspeed, h altitude, % down range, W
furnish a minimum only for short-duration problems, weight fuel constmed, v f11ght-path angle.'T

Minimizing paths of long duration follow a thrust, 0 drag, g the ceceleration due to yravity,
cert%1n1$orrgdor in the V-h cha;‘ti The features of L 11ft and Q the fuel-corsumption rate,
the family sharpen for the special case of thrust !
' ana drag indepondent of altitude, and considerable The sweeping assumption that drag can be ap-

#nalytical attention is accorded to this for the proximated by its level-flight value {s next
; invoked, This permits the deletion of eguation (5)
insight 1t provides to the more general model. E?gtthe g}iv?t1gn 8F Sath an?le } tgtcoztrol Status.
The problem of "steepest ¢)imb” is found to be coefticient, (, or angle of attack x, pre-
i11-posed with the vehicle mode] under consideration, V1°“5]§ a cgntrolhvar1%ble.1§ gor?ggpong;ng1yi
strajght-vertically-upward maneuver sequences being assgme to be guc as d° ?ah :h¥ 3 1]13”8 hs 1
furnished by a family of paths alternating between obviously trouble ah2ad wit § moaelling shou

% turnout to be large in optimized maneuvering or,
:p¥?;?t?23 ﬁgggzizgixgst;:;;egz1ght and including worse yet, should v exhibit jump behavior.

A - A A tamer

The aptimal-control problem to be treated,
Introduction then, {s the minimization of a function of the :
e final values of the state variables and final time. g

There has been interest from the beginning of

optimal-f1ight studies in approximations Featuring The variational Hamiltonian function {s ;
simplified vehicle models. Representation of drag :
as the dray for leve] flight leads to an inter- H= g {LIﬁEL - Siny} + ApVSiny + A, Viosy :
mediate vehicle mode} in which path angle v takes on Y ;

the role of a control variable and the order of the wQ (6)

system 1s reduced by one, An additional order-

reduction leads to an "energy-state” model with al- and the Euler-Lagrange equations are ‘

titude or speed as a contro] variable (Refs., 1, 2

?de3)&) Th%; is reviewed in a coTpanion 5ap?r ;
ef, 4}, e present paper examines optimal sym- - oY - y2 _ R .

metric flight with the intermediate vehicle model. Wy % %VKT B) - ApSiny - A, Cosy Aw %8 (7)

y T?eEa?alys1? 1? bas$d ighparttgpon ?n explora- ) (T-D) = Ay 3 ;
on of Euler solutions for the path-angle-as- A, =~ A 8 (T-D) =

control model carried out in Ref. 5. The present h v & n W 3%_ (8) !
analysis examines higher-order optimality conditions

and "chattering-control" phenomena. The weaknesses 4
of the model will be seen as more extensive than
previously noted,

*Research supported by NASA Langley Research Center *w =0 (10)
under Grant NAG 1-203 f

+Aerospace Engineering Graduate Student, Student an
Membe~ AIAA -Ay gCosy + ApVCOsy = A VSiny =0 (1)
«+Professor of Aerospace Engineering, Fellow AIAA v

~==«Ppofessor of Aerospace Engineering, ilember AIAA

x =0 (9) S
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In the following, the ti‘e derivatives of equation
(11) will be used to eliminate the time varying
costates in favour of the control + and
darivatives. Note that this is somewhat formal
since . may not exist. Using equations (7y = (1)
one may now proceed to eliminate those costates

- which are variable in the Hamiltonfan. Using (1)
Ay * % ( A = A Tany ) (12)
and hence

A, » V(2 oA Tany )+ Y b = AL iSecty )
Vo g b 7 h % (13)

~— ‘n‘<

substitutin? for 3, from {12) in {8) and using

equation (7

My + %( Mg~ Ay Tany ) %ﬁjT-D) + Au %% *0 (14)

Using (13) {n (7) and using equation (1), one ob-
tairs a second expression for 1, as

A * M a,[ 1-0) + %V(T-o)]
+ XX[?EEE? - ySecly - aIany; T-D)+ %V(T-D%]

TR 0s)

Equations (14) wnd (15) may now be used to obtain
an exprassion for 3, in terms of Ay and k@.

X [%EV(T-D) . Tc;__g_VV(T-o)}

- A, | T D) = -
% [ any % %ﬁy(r )] % %vy(r D) ‘+ 3365?

- Y 2 - z
r3ec”y ] + A; [%% 3 %8] 0 ()

The expressions (12) and (16) may be used for 21imi-
nating iy and 4, in the Hamiltonian with the
following result:

Cosy H{[%‘_ 3%/‘] (vu-o))}
[y 14] (222
. A {vz [_g_h_ - g%v] ((T-O))- g_sgllv} =0 4
Note that
) g%ﬁ.%%v}[] =%H[J‘E=Constant

B2

Where E=»h# %E, , the Specific eneryy,

9

In order to invaestigate the implications of this
complicated axpression, consider first the case of
frae final value of range x and fuel v. If the
final values of these vartables are left open, then
the natural boundary conditions iy*Q0 and 3y»0 apply
and the optimization problem is a" trade-oft between
final values of time t, altitude h and airspeed V,
the maximuym or minimum value of one of these varia-
bles or some function of these variables being
sought without regard to range or fuel consumption.
In aquation (17), 1f the transversality condition
for minimum time, H = -1 {s imposed, the well~-known
energy-climb schedule 15 obtained.

One notes that, in this case, equation {17) can
be satisfied either by cosv = 0, vertical flight,
or by vanishing of the bracketed expression, viz,,
the partial deprivative of specific excess power
V(T-D) with respect to altitude with specific energy
held constant. Thus the solution of this, or any,
hey=t o?t1mum problem 15 made up of yertical c¢limbs,
vertical dives and "energy ¢limbs" pieced together
in the proper order. Similar considerations apply
if fuel expenditure rather than time {is to be mini-
mized, In this case H=0, *x =0 and 3y » 1, and
equation (17) yields the minimum-fuel-climb path
with fixed throttle in the V~h plane,

If range is to be maximized or minimized with
final time and fuel unspecified, then i, » 11 and
H=)y=0,and a first-order differential equation
for path inclination emerges as follows,

2 . o0Y - (Ton)Us . )
{v [%H %%v]” ) 553"*} ° ()

If one chooses i, =<1 and a fixed value of H
(to be determined), with acy = 0, expression (17) 1s
the Euler equation for maximizing range to ¢limb
with fixed final time, With H =0, 3y = »1 and a
fixed value of iy, similarly, the maximum range to
climb trajectory with fixed final value of fuel is
obtained. It may be noted that the maximum range

to climb problem 1s 111-posed in that the range to
climb for thrust greater than drag without time or
fuel constraints does not have a maximum or even

an upper-bound. Further, fixed-throttle range-fue]
trajectories are not of any significant interest

in practical situations., Hence, attention will be
focused on the problem of maximizing the range-to-
climb with a specified final time (fixed H, A, = -1),

The system (1) - (3) and (18} generates a tra-
jectory family for the range problem., The possibi-
19ty of obtaining analytical solution of the system
for the case of thrust and drag as arbitrary func-
tions of altitude and air speed is remote. However,
using the assumption of constant-density atmosphere,
wherein the thrust and drag depend on airspeed only,
orie can obtain an analytical solutien tuv this
system (Ref, 5). The expression (18) can be re-

written as
y =V I (T-D)
Cosy (1-0) {Sﬁ a 3V } (19)

Time may be eliminated in favor of airspeed V as an
independent variable,
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In the following, several transformations of
{ndependent variable are carried out without
attention to monotonicity requirements, the thought
being to fit the solution segments ootained into
families in due course, The temptation of range as
independent variable will ve avoided, b-«ever, in
anticipation of purely vertical motion segments.

In the interest of brevity we designate y = (7-D)/W

] - - -
W%(Sinyﬂru) 'é‘ﬁ'{%ﬁ g{}v}“ (20)

With altitude-dependence suppressed, the path angle
» 1s determined as the solution of the first-order
differential equation

1 dy ! Siny »u ) =dul 2]
v aF i (21)

Further simplification is obtained by annther change
of independent variable, this time from V to u

1 d Siny - = ]
g ( siny - ) ! (22)

1f the rnles of independent and dependent variables
are now regarded as reversed, this equation takes
the form

2
dg+ 1 _u* = psSiny =0
dy Touy Tosy (23)
which is the form of the Bernoulli differential
equation

[

gu + (1) ALY (24)

with 2 = 1. According to Kamke, (Ref. 6), this
equation has the solution

where

E(v) = e};zdv (26)

with {dentification of f1 and f2 as

filn) = 1 : (27)

f s - Siﬁ
2(¥) frlosY (28)
The solution (25) becomes as follaws

-fSiny dy .
f—4i InCos
E(y) = ef°5* ag Y (29)

= Cosy

1= Coszdx +C| = Siny + C Cosy (30)
W [ Cosy

Before expressing this relationship in the form
+ = y(u), we relate the integration constant C to
equilibrium values of u and y corresponding to un-
acgelerated flight., Such values may be designated
with a superscribed bar:
i o= 3iny (31)
L = Cot¥ (32)

The solution may then be expressed as:

VRGN AN PRk 1d
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siny Siny + Cosy Cosy » [ (33)
H
or as ,
=1
y =7 +00s {E
‘_u] (34)

Here § 1s the value of u in unaccelerated flight and

3 = siflw (35)

In Fig. 1, the solution (34) 1s {1lustrated for
various vajues of =. The range of angle % has been
restricted to + 180° in this plot,

With this solution at hand, :he state histories
can be generated, If the thrust is taken as zero,
the state=Euler system produces the flattest-glide
trajectory, flown with maximum 1ift-to~drag ratio,
along with a family of transients to and from this
point (Fig, 2). When a positive margin of thrust
over drag exists, a family of oscillatory solutions
is generated for various values of y as shown in
Fig. 3, It may be noted in Fig, 3 that the inner-
most point corrasponding to u * ,2 in V-y space
corresponds to flight at (T-D)pgax, while along the
outermost closed path, the f1ight path angle v
switches between + 90°,

With the availability of the Euler solution
(30) to the maximum-range problem with altitude
dependence suppressed, one may proceed to obtain a
similar solution to the more general Euler equation
(17) using variation of parameters (Ref. 7).
Equation ?17) may he written as

, 2
= =g § - H 3
Fe {Comy gy °”xx;%;%1sv”)

et gyl

As in equation (22), the independent variable’
is changed from time to airspeed resulting in

2
d Siny - u ) = Cosy du -~ Cos“y H 1 _d (Vu)
E% ( Siny ) 'E‘I'HV : VE: &
2. A 2
+ Cos®y M d |V
Xﬁ Vg; w [‘Tf%] (37)

Rearranging, one obtains

2
dy( Siny - u ) - Cosy 3u = - Cos®y H
av u v X,

1 d
x Vo, &

2, M, A2
+ Cos®y 2 Q°d fV
Xf(‘ V2 EN[TP']

Equation (30) is the analytical solution to ‘the
differential equation (38) with H and \y both zero.
The expression (30) may be differentiated with
respect to airspeed to obtain

) ou = ( Cosy - C Siny) dy +dC Cosy (39)
uz W av  dv

Note here tnat C is no longer a constant, but a
function of the independent variable V. Substituting
for © in (39) from (30)
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- - Yy + de Cos
1y ® [(COSY ¢ Sty ) '& a\cf Y]
oo STy ¢ Cosy ) (40)

Using equation (40) in (38)

2

cos . dc = - Cos?y H 1 d (V)
STny ¥ C Cosy dV MWy av

2. A 2
+ Cos“y Y d |V
] o

from (30),
Cos?y dC = Cosly [-11 {_1 + 1 %H
av WAV W2
+ My + Q du-_1d ]
Iﬁ{V“u -\7376% WH%} 42

The quantities within the{ }brackets can be identif»
ied as

Since = 1

§'|ny + C COSY

-d_[ 1 _]= 1 + __L_du (43)
av ,V—E' ;?;- Vu2 a
and
-d =« 1 dQ+ 1 du+
Gl&] R R (44)
From Wwhich )

Ay
de=H d [ 1] - 2d (45)
4 i) Fals)

X
Equation (45) is readily integrated to yield

A
C = ﬂﬂ ) - + C 6
AXV'TI 'A'EVQE ! (46)

where C. is an arbitrary constant. Hence for the
time-range-fuel problem, the solution with altitude

dependence suppressed is

\ \ A

1 = Siny +( H_ - Q_ + Cy \Cosy

H (Ax Xg u ' (47)

To express the above result in the form v =
+(x), we need to relate the integration constant
¢y to equilibrium values of u and y corresponding
to unaccelerated flight. Unlike the situation in
the simpler problem, the interpretation of equation
(47) is not straight forward.

From a practical viewpoint the time-range
problem is of main fnterest since minimum-fuel
problems with fixed throttle are rare. Fuel-range
problem will not be discussed further in the present
paper and in subsequent development the fuel mul-
tiplier Vi will be taken as zero.

Investigation of equilibrium points with

'y = 0 results in a plot of the values of H/i, vs
airspeed as shown in Fig. 4 for a parabolic (%-D)
distribution illustrated in Fig. 5. In Fig., 4
three separate regimes can be identified. H/\y
values to the left of the {T-D)pay velocity are
positive while those between the {T'D)max point and
the V(T-D)pax Point have a negative sign. ATl H/}y
values to the right of the speed for V(T-D)pay Are
positive. Any of these values may be used to

B4
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evaluate the arbitrary constant ¢y as foliows, As
in (31)

%= Siny ORIGINAL PAGYE 15 (48)
. OF POOR QUALITY
Equilibrium value of H_ (49)
'\X
Coty = H_ 1 +C
or
Cyx Coty - HL (51)

x Vi
using (51) in (47)

1=S8iny + [H 1 - 1 + Cotv
. [_{___ W} Coty]CosY (52)

putting 4 = [L J. - 1.1 + Cotyland usin
Ay {v u VT} Y] ?

a well known Trignometric identity,

v = Tai! [ﬂ + Co§] [m] (53)

Equation (53) is the Euler solution to the
time-range prablem with altitude dependence of u
suppressed. In Figs, 6, 7 and 8, the analytical
solution evaluated for representative H/iy values
from_each of the three regimes is shown. Fig, 6
and 7 indjcate oscillatory solutions and are in the
neighborhood of a stable equilibrium point. The
similarity of these figures to Fig, 3 is striking.
The solutions in Fig, 8 are non-oscillatory and bear
some resemblance to Fig, 2.

Summarizing, one notes that the range problem
has oscillatory solutions when a positive margin of
thrust over drag exists. With zern thrust the
solution obtained is the flattest glide with a
family of transients to and from the maximum 1ift-
to-drag point. For the time-range problem, values
of H/xy to the left (low speed end) of the V(Y-D)pax
point produce oscillatory solution while on the
right of the V(T-D)pay Point a family of transients
to and from the equT?ibrium point defined by the
choice of H/\y is obtained.

Legendre-Clebsch necessary condition:

From the Euler-Lagrange equations, with \y = 0

gg, = =ly 9 Cosy + Ay V Cosy - Ay V Siny (54)
and

gzg, = A9 - A V) Siny - Ay V Cosy (85)
ay

Setting the left-hand side of equation (54) to
zero as required for a stationary minimum of H leads
to '

Tany = apV - Ayg or A9 - AV (56)
AXV -ka

From (56), then Siny = ( MY - A8 o

\/( AhV - 8 )d + Ain

(57)
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and
Cosy » Xxv ’ (58)

VOV = ayg )%+ a8V°
where ¢ = + 1

Using {57) and {58) in (55}, it is possible to
determine 2,

Naxt, one may employ the transversality
conditions for the range problem, viz., =1 for
range minimization and 1, = -1 for range maximiza-

tion. These lead to
A = 1, azH >0 ify lies in the second or third
3y quadrant (59)

A =1, gfﬁ, <0 1fy lies in the first or fourth
ay? quadrant (60)

It is apparent that with no restrictions on
the path inclination, the minimum-range trajectory
is that which maximizes the range in the negative
direction. if one imposes an artificial limit on
the path angle v, say -90 < y < + 90, the minimum-
range trajectories are vertical up~down flight
segments and any (Y,h) pair can be reached in zero
range if there exists a positive margin of thrust
over drag. Thus, with the vehicle mode] considered,
there is no limit to the steepness of climb.

The Legendre-Clebsch necessary conditions are
met in strengthened form for the maximum-range
problem for values of the path angle v in the first
or fourth quadrants, However, physical reasoning
makes clear that a range maximization problem with=-
cut time or fuel constraints will not possess a
proper maximum or even an upper bound. In yiew of
the above, the problem of interest is to maximize
the range to climb from an initial (V,h) pair to a
final (V,h) pair in a fixed time. This problem is
of value in studies of the type reported in Ref, 8
for a point-mass-modelled vehicle.

It may be noted at this point that in the cases
of time and/or fuel minimization problems with
range open, tine Legendre-Clebsch necessary condition
{s met only in weak form along central arcs and,
hence, these trajectories fall into the class of
singular extremals.

Conjugate-point test:

The Legendre-Clebsch necessary condition is met
with a margin for the time-range problem and hence
the Euler solution (17) with iy = O furnishes a
relative minimum for initial and terminal points
sufficiently close together. For extremals of
finite length, however, the task of ensuring that
the second vari4tion is non-negative for admissible
neighboring paths leads to the accessory-minimum
problem in the ¢alculus of variations, This in
essence boils down to a search for a system of ad-
missible variations, not identically zero, which
offer the most severe competition in the sense of
minimizing the second variation. If a system of
nonzerc variations can be found which makes the
second variation zero, then it fis clear that a
neighboring path s competitive and that the tes*
extremal furnishes at best an improper minimum and
at worst a merely stationary value (Ref. 9). The

B5

first valye of the independent variable x = Xx* » Xq
for which such & nontrivial system can be found
defines a conjugate point,

Following the analysis of Ref. 9 for the Mayer
problem, the rank of the matrix of variations of
states and the multiplier corresponding to the state
being minimized with respect to the initial values
ggzcostates {s evaluated along the test extremal,

- q
The rank of Ef_ iig ..........iﬁg
PR g
I : (61)
T, g
o R PPN |
L 3&10 BAZO dkno -

provides the criterion for the existence of a conju-
gate point. If the rank of the test matrix (61)
drops at any point along the test extremal, it is
indicative of the occurrence of a conjugate point.

For the time-range problem, if the independent
variable is changed from time to range, the equa-
tions of motion become

h' = Tany (62)

TR o

The optimal-control problem then is to maximize
the final value of altitude 'h' for a sperified
range with time fixed, With the interpretation of
H as the time multiplier, the test matrix (61) be-

comes

- 1 - 7
WA YRV

axh 3 0 ayo aAho 3H0 ayo
U I [ O R U
aAho E 0 SYO 3Ah0 BHO SYO

Py By Ay 10 0

3%, oH, 3y

h, Mo Yo

L i ! i

Note that time appears in this problem as a state-
1ike variable with

1
= 1
VCosy

A prime on the variables denote differentiation with
respect to the range variable x.

From (64), the sign of

(65)

av .3t - 3V .3t (66) -
SYO aHO aHO aYO

evaluated along the Euler solution determines the
rank of the matrix =4). If the sign changes at
any point on the t: nge trajectory it is indi-
cative of a conjugate .




The Euler solution obtained for the time-range
problem, with altitude dependence of u suppressed,
may now be tested for conjugate points., In view of
the particularly simple form of the conjugate-point-
test for this problem, {t seems reasonable to
attempt to obtain analytical approximations for the
partial derivatives in (66).

Linearizing the equations of motion and the
Euler equation %]7) with range as the independent
variable about an equilibrium point at a particular
altitude,

5y = ag &V - ay &y (67)
st' = -2y 6V + ay oy (68)
5Y. = 34 sV - 556‘{ + 36 &H (69)
Where
an = 3 (7-D) 70
0 WVCosy 3V (70)
3 = 3 (7)
a, = ]
27 e (72)
V*Cosy
33 = S'lﬂYz
VCas©y
a, = -Cosy g H + 3(T-D) q 1-Cosy H
vioA @ V4(T-D) v X

+ a(T-Df 1 - Cosy H ]
V(1-0)2 ;3" [ v N

| 2r) F

‘i e k- 1]

.

ag = a (74)
ag = Cosy q [V eéT-D) + (T'D)] 75
virp) AL ? )

Equations (67), (68) and (69) constitute a linear,
constant-coefficient system which can be put in the
following form using Laplace transforms (initial
conditions on %V and 4t are zero)

-51

sV{s) =

510)  i(arag-agss) (76)
sl 1% (77)
HO s 5Praa4ma025)]

5t s; =" [g"‘oas'%az)'aaﬁ‘] (78)
Sy s [s"+(aqa4-2035)]

st{s) = _ [(agag-ayap)-23s ] ag (79)
D s[sPragagmages)]

apd
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and canc,11ing out con.on constants in the numera-

tor, the e-uations (76) - (79) can be brought to
the form

(81)

2
= W
w0 7 (22
n
8V o (83)
S = n
$ ; s(sz+nﬁ)
' 2
st(s) = {1+TS)up (84)
§v(0Q) s(sz+w§)
(1475 Ju?
st(s) = n
SH0)=  ZraZpal) (Zrd) (85)

Equations (84) and (85) may be further simpli-
fied using the expression (82) and (83),

st{s) = sV(s) + T 6V§s§ (86)
3v(0) SH ; Sy

“2 + T V(s (87)
st(s) = n '"%ﬁ% 87
SH g sz(sz+wﬁ) *H

Equations (86) and (87) imply
sti{x) = aV(x) + T §¥(x) a8

2
st(x) = ! “n_ |+ T 8V(x) (89)
My W OE|

using (88) and (89) in (66)

VLt -V Lot
o Mg Ty T g | sP(sPud)

2
- §sv(x)
{SHO } (90)
And consequently, one needs to obtain the inverse
transform of only three transfer functions, namely

2
N(s) , sV(s) . “n
frp S0 ()

2 , .
when W, is positive, the roots of the denominator
polynomial are conjugates and
8V .3t -3V at = mnxSin(wnx) + 2C05(wnx)- 2
g EL 3y 3vg (91)
The right hand side of (91), after being zero at
X = 0, will subsequently become zero at

x = 21

“n

implying tha@ conjugate points will occur every full
cycle of oscillatory solution. Hence, if the

(92)
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equilibrium point for the given H/iy 1s stable,{,e.
it produces an oscillatory solution, a ¢onjugate
point will accur at the end of one full cygle of

the oscillation. On the other hand, if wy* is
negative, the roots are real and distinct, symmetric
about the imaginary axis. In this ctse

3V, 3t -3V At #

~x.d.Sinh(dx) + 2 Cosh(dx) - 2

Where d '\JQZE]

Expression (93) is zero only at x = 0. In this case,
conjugate points do not occur, Frem (93), then, if
the equilibrium point for the given H/)y is unstable,
conjugate points will not occur,

The conjugate-point test is now applijed to the
three regimes of H/iy described earlier, As ex-
pected, for all values of H/ig to the left of V(T-D)
max point, conjugate points occur, indicating that
the Euler solutions obtained with these values of
H/ %y do not afford a maximum to the time-range
prog]em aver long intervals., Euler solutions ob-
taired with H/ix to *he right of the V(T-D)max point,
on the other hand, satisfy the Legendre-Clebsch
necessary conditions apd Jacobi's necessary con-
dition, and hence are optimal trajectories for the
time-range problem,

Numerical solution of the time-range problem:

With the insight gained for the time-range
problem with altitude dependence of thrust and drag
suppressed, we now embark upon a numerical study of
the more general case in which the aerodynamic coef-
ficients are functions of Mach number and the thrust
is Mach-altitude dependent. The data for a version
of the F-4 aircraft with afterburner operative are
used in this study, A cubic-spline representation
(Ref. 10) is used to compute the values of zero-
1ift drag coefficient and the induced-drag coef-
ficient. The drag coefficient is then computed as

Gy = Cp (M) + K(M) ¢

Where CL = W and CD and K are standard
%pvzs notatign.

The drag is then obtained as the usual product
of drag coefficient, dynamic pressure and the air-
craft wing area. A cubic-spline lattice (Ref. 10)
is used to compute the value of thrust at a given
altitude and Mach number. Atmosphere density and
speed of sound as functions of altitude are inter-
polated from standard atmosphere tables using cubic
splines. The system differential equations are
integrated using a fifth-order Runge-Kutta-Verner
method with variable step size.

A plot of H/xy vs airspeed for equilibrium
flight conditions corresponding to unaccelerated

flight with specific enerqy E = h + %E , frozen

at 60,000'is shown in Fig. 9. The three regimes of
H/ 'y identified earlier in this paper can be seen in
Fig. 9. Numerical integration of the Euler equation
with H/\, values picked from each of these regimes
indicated that the solution for H/\y values to the
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1eft of V(T-D)max are oscillatory., Numerical
solution using H/xx to the right of V(T-D)max point
(high speed end) are non oscillatory and vwofent in
character,

Next, a numerical conjugate-point test is set
up based on a scheme suggested by Cicala (Ref, 11),
In this scheme the partial derivatives with respect
to ‘4, required in the matrix (64) are calculated

approximately in terms of difference quotients,

small increments in initial iy are employed in the
evaluation of neighboring solutions of the original
system of Euler equation. The conjugate-point test
was carried out for various values of H/ix picked
from Fig, 9. It was found as expected that only the
non-oscillatory trajectories corresponding to H/Xy

values on the right of V(T-D)max Satisfy the no
conjugate point condition. Oscillatory trajectories
indicate the existence of a conjugate point after a
cycle of oscillation.

From the foregoing it is clear that the solu-
tion to time-range optimal-control problems are
nonoscillatory and violently unstable in character,
Within the permissible range of H/x, as H/ly in-
creases, the Euler solutions approach the energy
climb schedule in the V,h plane. Of particular
interest in practical applications is that trajec-
tory which terminates at the "dash-point" on the
flight envelope, the maximum-level-flight-speed
point, To determine the value of H/Ay which will
accomplish this, a plot of the locus of equilibrium
points corresponding to unaccelerated fiight at
constant energy is made. Once this value H/Ay is
found, what remains to obtain the optimal trajectory
is to determine the initial value of the control
variable v for a given set of initial conditions on
altitude and airspeed.

In Fig. 10 the level-flight envelope for the
F-4 aircraft is shown along with the energy-climb
schedule, The discontinuity in the energy-climb
schedule due to transonic drag rise may be noted
(Ref. 12). The curve B is the locus of equilibrium
points at each energy level corresponding to un-
accelerated flight with the appropriate H/Ayx, The
discontinuity due to transonic drag rise is again
visible. An Euler solution for initial values of
airspeed and altitude close to the equilibrium locus
is also shown, To determine this trajectory an
iteration was undertaken on the initial vajue of
the control varjable vy, With quadruple precision
on the 1BM-370/158, the initial path angle had to
be determined to 13 significant digits. To 1lus-
trate the sensitivity of the Euler solution to the
initial value of path angle v, the last digit of y,
is perturbed in the positive and negative sense with
the trajectories 1 and 2 shown in Fig., 10 resulting.

A few more Euler solutions with initial condi-

tions far removed from the equilibrium locus are
shown in Fig. 11.

Discussions and Conclusions:

In this paper, optimal flight in the vertical
plane with a vehicle model intermediate in com-
plexity between point-mass and energy models was
studied. Flight path angle takes on the role of
control variable in the model and range-open prob-
Tems feature subarcs of vertical flight and singular
subarcs as previously studied.

*
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Minimum-range climb problem (the steepest é?f&b
of Ref. 15) has been found t¢ have no minimum, not
even a lower bound, In reference 15, the steepest-
¢limb problem was studied using the Green's theorem
device of reference 13 and 14, There is an fmpor=
tant difference in vehicle modelling from that of
the present paper which should be noted as a key to
resolving disparities between the character of
optimal paths emerging., The &nalysis of Ref, 13 and
15 1n essence replace cosy in equation (3) with
unity so that the problem solved is maximum altitude
in a given distance (1,e.arc length) rather than in
a given range. This is a necessity with the linear-
integral approach which can accomodate only problems
of dimension two and very special form of state
equations. The solution to the distance ¢limb con-
sists of a central path flown along a(T-D)max locus
in the ¥Y~h plane with vertical climb and dive tran-
Zit}ons at the ends to meet specified boundary con-

tions.,

From physical considerations it can be seen that
when a positive margin of thrust over drag exists,
the maximum-range climb trajectory without time or
fuel constraints has no proper maximum nor an upper
bound, In view of this fact major attention has
been accorded to the time-range problem.

For the special case in which the thrust and
drag depend only on airspeed, a plot of the ratio
of time and range multipliers H/Ax for equilibrium,
corresponding to unaccelerated flight, revealed the
existence of three regimes. Positive values of
H/\x on the low-speed side of V(T-D)pax and all
negative values of H/\, were shown to yield oscilla-
tory solutions. Altholgh these meet the Legendre-
Clebsch necessary conditions, they fail the con-
Jjugate-point test. Euler solutions with H/\y chosen
to the right of the V(T-D)max point satisfy both
Legendre-Clebsch and Jacobi necessary conditions
and are nonoscillatory in character, Depending on the
nature of aircraft data, unstable equilibrium points
may sometimes appear for certain H/*X values to the
left of airspeed corresponding to ( T-D )max at cert-
ain energy levels, These normally have short duration
and are not of major interest.

Numerical solutijon of the Euler equation and
a numerical conjugate-point test for the F-4
aircraft data reinforced the conclusions arrived at
in the analytical exercise.

From a practical viewpoint, the time-range tra-
Jjectories which terminate at the "dash-point" on
the level flight envelope are of particular interest.
The multiplier ratio H/%y corresponding to this
point is determined using the locus of equilibrium
points at each energy level corresponding to un-
accelerated flight. With this value of H/\y, Euler
solution for any (h,V) pair is obtained by
iterating on the initial value of v, the control
variable.

Euler solutions were obtained for various
initial conditions. One observes that these tend
to funnel rapidly into a certain corridor in the
V-h chart, in the vicinity of the equilibrium locus
corresponding to unaccelerated flight. This feature
of the solution famiiy can be exploited in practical
situations to simplify the computation of optimal
trajectories,
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Abstract

Minimum~time climbs in "energy" approximations
are reviewed and further consideration given to
chiofce of variables, A pair of variables which
seem to offer attractive replacements for altitude
and afrspeed in singular-perturbation procedures is
suggested, Use of the new variables in an energy-
modelled climb-dash problem is illustrated,

Introduction

In Ref, 1, Fritz Kaiser, a flight-test engineer
at Messesachmitt, A. G,, introduced the concept of
"GESAMTHOHE" ("resultant height") in connection
with aircraft minimum-time climbs. This is the sum
of potential and kinetic energy per unit weight,
Subsequgngly it has been refeprred to as "energy
height"%s3 and "specific energy".4 Its use as a
state variable in trajectory work is attractive be-
cause it is a “s]gwgr" variable than efther alti-
tude or velocity,? v Attempts to synthesize
"slow" state variables are described in Refs.'6 and
7 in connection with singular-perturbation proce-
dures, The present development attempts to synthe-
size both '"fast" and "slow" variables for the
minimum-time-te-climb problem along 1ines explored
earlier in an appendix to Ref. 6.

Climb Equations

The equations of motion for climbing flight are
given in terms of conventional state variables,
eltitude. h, flight-path angle, y, and velocity,

, a$

h=Vsiny (1)
Yo F [';‘; - cos Y] (2)

V= 915591 - g siny (3)

Here T is thrust, D drag, L 1ift and g the accele-
ration of gravity. An assumption of thrust-along-
the-path has been incorporated.

Energy-Modelling Simplifications

An essential feature of "energy" approximation
is that drag be treated as a function of h and V
only. This is consistent with approximation of
sin v and cos y via expansion in powers of ¥
through first-order terms only and with deletion
of the y term as negligible -- another feature es-
sential to reduction in order. With these simpli-
fications the system becomes

hoey (4)
O = 9.(%.'20-). - gy (5)

where D(h,V) 13 evaluated for L = W.

"Slow"~Vai'iable Choice

Two hew variabTes, ¢ and ¢, are to be intro-
g:ceguin place of h and V, ¢ to be "slow" and ¢
ast",

The equction of state for ¢ is
bedpe B
<3 R [ - o 1)y ()

If one insists that ¢ be independent of the
control-1ike variable, v, then ¢ must satisfy the
partial differential equation

Vi g0 (7)
This is satisfied by
v2
LS (8)

or by any once-differentiable function of this ex-
pression,® Thus ¢ = E, specific energy, ts "slow"
in the sense specified, '

"Fast"-Variable-Choice Considerations

It has been usual _to adopt as the second state
variable, v, either V5 or h,7 Either is suitable
for analysis of the "slow" motion, given by the
single state equation

é=-"-(%10-)- (9)

For minimum-time passage to higher energy levels,
the right member of (9? is maximized with respect
to V or h at constant E, The expression on the
right of (7) is "specific excess power", Pc, of the
flight-performance 7jterature (e.g. Ref, 43 and
simply p later in the present paper. With a more
general choice of ¥(V,h), the maximization of (9)
is done with respect to this variable after V and h
have been replaced by suitable functions of ¢ and ¥

.representing the inverse transformation. The

resulting values of V, h and
ever,

are the same, how-

C1

N84 16118



vy e

o et
-

ORIGINAL PAGE 1§
OF POOR QUALITY

Singular-Perturbation Analysis

The choice of y(V,h) matters, however, in the
determination of' y along the "slow-motion" (or
*outer") solution, as y must be such that ¢ = 0, in
the procedure of Ref, 7, Witk the choice of y = h
as in Ref, 7, the approximation vy = 0 is obtained,
while if ¢ = V {s assumed, then

y = {0 (10)

whici: is, to linear approximation in y, the path
angle for unaccelerated climb, More generally the
expression

&-%{fs &-g-&\'/
'%%Vv"%%[’%—'—ol-gv]-o (1)

is to be solved to obtain the zeroth-order "outep"
approximatien for y. The choice

v gg.le

suggests itself for compatibility with the outer
solution, for

e B v H [ o]

Here

(12)

(13)

p s v(T-D

(14)
is "specific excess power," a known function of h
and V, This choice of ¢ is seen to generate
zeroth-order y consistent with (4) and (5) along
the outer solutjon,

Choice of "Fast” Variable

Contours ¢ = E = const, and ¥ = const. are
shown in Fig. 1 for the aircraft data cf Ref. 9 (a
version of the F-4), The contours of y = constant
indicate a breakdown of one-to-one mapping
associated with jumps of the ensrgy-climb path,

v = 0, between ridges of p(h,V)?: fn fact, the
mapping ¢,y + h, V is two-to-one and even three-to-
one within the flight envelope, This local non-
invertibility represents a less-than-ideal feature
for a coordinate transformation; however, one does
not actually have to transform to the new variables
to exploit the concept,

Flight-path angle y is shown as a function of
¢ = £ in Fig. 2 for three choices of "fast"
variable: h, ¥ and y. The contribution of the
"outer” solution (shown) dominates the zeroth-order
composite solution. Experience is that the calcu-
lation of first- and hig?er-order composites is
intricate and expensive.l0 Thus it makes sense to
choose variables carefully so as to enhance the
fidelity of the zeroth-order solution as far as
possible.

c2

Climb-Dash Prob)em

Consider as an application the c)imb-dash
problem, in which a minimum-time trajectory to a
remote value of X 1s sought, where x is down-range
and, for small y is defined by

(15)

The character of the solution is that of a combined
¢limb~-dash ?enerally faster than an nnergy climb
(Fig, 3) fairing into sustaineJ fiight at the high-
speed point on the level-fljght envelope. v as @
function of E {s shown in Fig, 4 for the three
choices of fast variable, Solutions of a cor=
responding point-mass-modelled probiem for dif-
ferent aircraft data are studied in Ref. 8,

=V
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Fig.1 Contours in the Altitude - Airspeed Chart
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Fig.3 Altitude vs. Velocity = Climb- Dash
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