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SUMMARY	 `

The present report consists of three AIAA papers concerning research

carried out under NASA Grant NAG 1-203 during the period 1 July 1982 to 30
y

June 1982. Technical monitors on this research work were Dr. Douglas Price

and Dr. Christopher Gracey of NASA-Langley's Theoretical Mechanics Branch.

The papers are as follows:

On-Board Rear-Optimal Climb-Dash Energy Management, A. R. Weston,

E. M. Cliff and H. J. Kelley, presented at the Americal Control Conference

San Francisco, California, June 22-24, 1983.

Optimal Symmetric Flight with an Intermediate Vehicle Model, P. K. A.

Menon, H. J. Kelley and E. M. Cliff, for presentation at the AIAA 	 -	 'I

Guidance and Control Conference, Gatlinburg, Tennessee, August 15-17, 1983..

Energy State Revisited, H. J. Kelley, E. M. Cliff and A. R. Weston, 	
..

for presentation at the AIAA Atmospheric Flight Mechanics Conference,

Gatlinburg, Tennessee, August 15-17, 1983.`'`
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ON-BOARD NE/iR-O?TIMAL CLIMB-DASH ENERGY MANAGEMENT

A.	 R. Weston'
1 6 ^^ 6

E. M. C141`1`2N
84 ,	

,j'

H.	 J. Kelley 

Aerospace and Ocean Engineering Department

Virginia Polytechnic Institute and State University
s

Blacksburg, Virginia	 24061

The subject of this paper is the study of optimal Cz	 Lift Coefficient

and near-optimal trajectories of high-performance D	 Dra g
fighter aircraft in symmetric flight. 	 On-board, reel-

S ecific Energytime, near-optimal guidance is considered for the h	 t
• climb-dash mission, using some of the boundary-layer L	 Lift

structure and hierarchical ideas from singular per- in	 Mass
turbations,	 In the case of symmetric flight this re- Q	 Fuel Flow Rate
sembles neighboring-optimal guidance using energy-to- T	 Thrust
go as the running variable.	 However, extension to V	 Velocity
3-0 flightis proposed, using families of nominal x	 Downrange
paths with heading-to-go as the additional running

y	 Crossrange
variable.	 Some computational	 results are presented
for the symmetric case, y	 Flight-path Angle

Introduction
n	 Throttle Coefficient

q	 Bank Angle

On-board, real-time guidance is constrained by
x	 Hooding Angle

interpoiation Pari^meter
the limited computational 	 resources available, par-
ticularly on fighter aircraft, where space and weight Problem formulation
are at a premium.	 As a result the algorithms employed
must be simple to implement and have small storage re- The overall objective is to develop an on-board,
quirements,	 The objective of the presently described real-time near-optimal	 flight-control	 system in 3-D
effort is to investigate practical algorithms for a for a variety of missions and for arbitrary initial
variety of missions in 3-D flight, 	 In the present conditions,	 The example developed here is for the
paper anapproach isdeveloped for the intercept mission climb-dash intercept mission in 2-D. 	 The equations of
in symmetric flight based on a concept, sketched in motion for a point-mass model of an aircraft can be
Ref,	 1, in which extensive numerical computation is

the	 but
written:

required on	 ground prior to the mission, 	 the
on-board execution is simple, 	 The scheme takes ad- i

vantage of the boundary-layer structure common in
h a V	 (2)sin y

.
1singular perturbations, studied in Ref, 	 (2), arising

with the multiple time scales appropriate to aircraft i = N cos ^- W cosy)/mV	 (3)
dynamics,	 Energy modelling of aircraft, as first

= V	 (4)examined in Refs.	 (3 - 5) and extensively developed in x	 cos y

Rof.	 (6,7)	 is used as the starting point for the
analysis,	 In the symmetric case, a nominal path is The foilowing assumptions are embodied; 	 fixed mass,

generated which fairs into the dash or cruise state, thrust along the path, flight over a flat earth, and "+

Feedback coefficients are found as functions of the no winds aloft.

' energy-to-go, (dash energy less actual energy), along
the nominal path,	 These serve to generate transitions Aerodynamic Modelling

towards the nominal path, closed-loop, and to counter
L' disturbances.	 In this situation the guidance method The aircraft which is used as an example to per- ,i

is similar to the neighboring-optimal guidance methods form numerical calculations is a high-performance

of Refs.	 (8-16).	 However there are two significant interceptor.	 The drag is modelled as a parabolic

differences;	 in the present work the gain indexing function of the control: K

is done in terms of the current energy; this avoids
problems encountered in estimating the index time. Cd = Cdo +K CQ2

Further extension to 3-D flight is considered here
e where families of reference paths would replace a The thrust is a function of Mach number and altitude; 'n

single trajectory, with heading-to-go as the addition- it is Stored using the spline-lattice technique of Ref. I
al	 running variable. 17.	 The flight envelope is shown in Fig.	 1,

Nomenclature
Reduced-Order Modelling

Cd	Drag Coefficient
Order reduction, based on observed or assumed time-

Cdo	 Zero-Lift Drag Coefficient scale separations, is attractive in solving flight
vehicle control problems,	 This is not only due to the
smaller number of states and unknown initial conditions

ReT	search Associate but more significantly to improvement of the condition-

2 Professor
ing of the system of differential equations by the
confinement of the more unstable dynamics to +i!*
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boundary-layer corrections, it has been appreciated
since the work of Raf. 3 that h and y can be Chang4
much faster than E, which in turn 1s a 'fast' variab

d

le

in comparison to the range, This loads to the refor-
mulating of the equations of motion, foltoy^Ing Ref, 6,
with the interpolation parameters cl and c

c2 A s V sin y	 (5)

c2 Y 
M (L - W Cos Y)/mV	 (6)

cl	 n V(nT - D)/W	 (7)

x ^V Cos Y	 ('l)

The introduction of three separate time scales in the
system must conform to the requirement of the Tif^onov

theory (Ref, 18) that the ratio (c2/0) .o- O as c ., 0,

as discussed in Ref, 6, Two resulting possibilities
are now discussed,

Rectilinear-Motion Model

The simplest model 1s found when c l and c 2 are

(taken as 0. The result of these assumptions on the
differential equations are noted:

El 
D H CY A o1 + C^ 0 Wa	 (9)

C2 . 0 + E - 0 -,	 nT n D	 (10)

These equations embody the assumptions that the
states h,Y, E can be varied instantly in a control-
like fashion, white n and C t are chosen to satisfy (9)

and (10), The control-like states h, E are chosen to
minimize the Hamiltenian, Ax k. As Xx is constant
the min-H operation picks out the dash point on the
envelope. This is the zeroth-order "outer" solution
of singular-perturbation theory, which the solutions
from other time scales fair into,

Energy-State Models

If c l	1, 0 '' 0 the next level of complexity,
known as energy modelling, is found, y and h are
still assumed to be 'control-like', and 'fast', while
E is now a 'slow' variable. Ot is still determined by
eq. (9) ; h and n are chosen to minimize H-J.xX + J.E t,
where E is governed by eq, (3) and AE by

AE	 aE

aH
 (11)

n and h are found in terms of the ratio of 7,E to J,x

I

nd their signs; the ratio determines the relative
importance of range rate and energy rate, while the
signs determine the sons'e of the optimization. For
example if XE is negative, then n - 1 minimizes H; if
XE is positive then n = 0. If ax - 0 h will maximize
the excess power, leading to an 'energy-climb' (Refs.
6, 19, 20) ; the resulting path is shown on the h-V
plane in Fig. 2. This schedule shows multiple jumps
in altitude which arise from realistic variations on
the thrust data. This contrasts with other examples
where the altitude jumps are typically due to the
transonic drag-rise (Refs. 19, 20).

In the intercept problem > ^ 0. The "energy climb"
path traced out for ax = 0 is shown in fig. 2, where
the path does not fair into the "outer" solution
operation at the dash point. The analysis and com-
putations are more complex: the value of XE is now
pivotal and the initial value of (XE/Xx) will de-
termine the ensuing path. Finding the solution which

fairs into tho dash-point is therefore a two-point.
boundary-value problem in one dimension, solved using
the usual 1-0 search techniques. This 'range-optimal-
energy-climb' is shown in Fig, 3, with the enorgy
climb for comparison.

The disadvantages of this ap proach are that it re-
sults in a y approximation of 0 (whereas in the climb-
dash problem theactual angle for a typical high per-
formance fighter may be it excess of A5°), and that
instantaneous jumps in the altitude appear at the end-
points, and also are possible during the trajectory,

Sinqular-Perturbation Procedure

By the use of singular-perturbation theory,
boundary-layer type corrections can be used to over-
come the weaknesses of the energy model, i.e. initial,
internal, and final jumps in altitude, While the
altitude discontinuities are eliminated by expansion
to the zeroth order, nonzero Y values are obtained in
the procedure of Ref. 6 by continuing the expansion to
the first order, This is a nontrivial problem in the
case where the altitude transitions occur at the be-
ginning or the end of a trajectory, and is even more
complex in the case of an internal altitude jump. As
a result, the zeroth order-correctedenergy model loses
its attraction when realistic ys are required for on-
board use as commands,

On-Board Guidance

An alternative to using order reduction, suggested
in Ref. (1), wr.ich is simple enough to lend itself to
on-board implementation is now developed, for the case
of symmetric flight, the scheme has roots in the
hiearchical structure of solutions of the energy model,
in which specific energy is a relatively 'slow' vari-
able and its value determines the control-tike 'fast'

variables, h and y. This suggests that tra,)ector^tes
of the point-mass model funnel rapidly intu the vi-
cinity of a single path, which fairs into the dash-
point, The idea pursued in this and the companion
paper of Ref, 1 is to determine this 'skeletal path',
for the point-mass model, for as wide a range of
unergies as possible. This is the nominal, or re-
ference, trajectory and the altitude and path-angle
histories are recorded as functions of the energy-to-
go, The next step is to generate a neighboring-
optimal feedback guidance law which will control the
aircraft so as to follow a neighbor of the nominal
optimal path, Linear-feedback coefficients generate
transients which bring the aircraft to the vicinity of
the reference trajectory. The guidance law is a linear
feedback control based on the difference between the
nominal and actual altitude and path-angle values. The
coefficients, which correspond to minimizing the second
variation, as in Refs. (8 06), are found by perturbing
the altitude and path angle separately from their nomi-
nal values along the reference trajectory, The optimal-
control problem is re-solved and the partial derivative
of the control with respect to the states (at fixed
energy) is found in difference-quotient approximation.
The Ct commands which are sent to the autopilot are

taken from the nominal path, with linear corrections
for variation with altitude and path-angle from their
nominal values;

Ct ' Ct*(E) + aht (E) (h-h * (r)) + aY
L
 (E) (y-Y*(E)

On-board use for full-throttle climb-dash requires
only the storage of the states h'(5) y* (E), the con-

*	 aCL
trol C p (E), and the feedback coefficients 

ay 
(E),

x
^i
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(E), as functions of the energy or energy-to-gc,Zr

t0^, ima1̂ Solu tions Usiny^The Noint ^MasaModal

A requirement of the proposed idea is a large
number of optimal-control solutit&3 to the point-mass-
modelled problem. This can be done by the use of
direct methods, such as gradient methods, where the
control history is parameterized by sectionally-linear
or spline approximation and the terminal conditions
are met by either penalty or projecW,-, techniques.
Alternatively the question can be posed-point
boundary ve+lue problem with split conditions and
boundary conditions, which can be solved by indirect
methods such as multiple-shooting (Refs. 21, 22). To
solve the problem of time-optimal control, one forms
the variational Hamiltonian:

H • AEE + ah(i + A y j + Axk

and applies the Maximum Principle (Ref, 23, 24)), Th-
resulting Euler differential equations are-

all

allah..

A	
aH

Y	 BY

^ „ - aH
x ax

The lift and the th ottle setting must be chosen (with
the present sign crnvention) to minimize the Hamilton-
ian, which requims that:

5Zk^0

and

n0l

(AE t 0)

Method of Solution

Euler solutions were found in 'the present effort
by the method of multiple shooting, using the algo-
rithm and computer program of Refs. (14, 25) kindly
supplied by DFVLR, Oberpfaffenhofen, FRG, In this
method, the interval of integration is broken up into
many subintervals. This is preferable to 'simple
shooting', as optimization problems of lifting flight
are ill-conditioned, the state-Euler system being in-
herently unstable, Partitioning the time interval has
the effect of suppressing numerical-error growth.
This need arises in the calculation of the feedback
gains, found by the difference of the control at the
beginning of two optimal solutions. As a result, to
find the gains to 4 figures the control must be known
to at least 8 figures. The multiple-shooting method
has greater accuracy than the other methods available,
and although it is sometimes difficult to generate the

Initial reference trajectory, the subsequent calcu-
lation of the feedback gains is rn?atively easy, as
the method has good convergence properties in the
vicinity of a solution.

Optimal Reference Trajectory

The first objective is to generate a reference

optimal path using point-mass model dynamics, over the
widest possibl y energy rang. In the climb-dash
problem being studied, the highest energy corresponds
to that of the high-speed point on the aircraft en-
volope, the dash outer solution'. The lowest energy
corresponds to the trajectory which just kisses the
terrain limit, i.e. below this energy, optimal so-
lutions which start at zero altitude would dive below
the terra f a limit if it were absent, this tower
energy is found by examining the initial load factor
of a family starting from level flight at the terrain
limit altitude: when the initial load factor is 1,
this lower energy is determined, This is shown in
Fig, (4), where the initial load factor is plotted for
several different initial energies. Further, as the
climb is the boundary layer of the dash "outer" so-
lution, it must fair into the dash state asymptotically,

If a finite time is used, this is theoretically im-
possible and a final control transient is inevitable
to meet the boundary conditions; however such tran-
sients can be minimized by picking a climb trajectory
which is long enough in duration, A measure of smooth-
ness with which the final approach is made is the final
toad factor: as the time of flight is increased it is
found that the final load factor approaches d value of
1, exponentially, see Fig, 5.

A trajectory of sufficient durution that the final
load factor is 1.001 is taken as the nominal path. This
resembles an energy-climb schedule in that the energy
of the aircraft determines the optimal altitude and
path-angle; in fact the altitude chosen, for the Range-
Optimal-Energy Climb is close to ,hat from the Euler
Solution at the same energy; Fiy. J compares the two
solutions in the V-h plane, Itis important to note
that 28-decimal-digit precision wasrequired for dc-
cessfui convergence of the multiple-shooting iterative
process for the "long" 2-D point-mass Euler Solutions
under discussion,

Feedback Coefw1 W„ nts

The feedback co pf 1e-ient= for the neighboring
optimal guidance schc:. ^, ,e nwrdod as functions of the
energy-to-go along the .0erenev path, As discussed
earlier, these are founts in difference-quotient ap-
proximation as the average of the forwards and back-
wards differences. The gains are found to be very
large near the final state and the feedback system
correspondingly 'nervous'. In the last foot of
energy-to-go, both of the feedback gains start to grow
exponentially. This sensitivity of neighboring -
optimal-guidance schemes close to the terminal state
has been noted in the literature (Refs. 8-16).

Simulation

Following the satisfe.ttory splining of the nominal
states, controls and feedback coefficients as functions
of the energy-to-go, the guidance scheme was tested by
running a simulation of s he point-mass-model, using the
feedback law, and comparing the resulting trajectory
with an Euler solution which started from the same
initial conditions, With zero disturbance the auto-
pilot was able to follow the nominal path more than
satisfactorily, over the entire range of energies, de-
spite the inevitable errors which arise in the spline
representations and numerical integration. Tests were
performed with the initial altitude disturbed from that
of the nominal path at different energies up to 15000
feet above and below the nominal path. The resulting
trajectories are shown in Figs, 7-12, These show that
the feedback law follows the optimal solution closely,
even when the initial disturbance is far outside of
the range of linearity of the feedback gains.
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The analysis so far has not taken into account the
variation in aircraft weight, 3-0 flight, winds aloft,
and nonstandard atmospheric properties. The problem
must be re-solved with variable weights before actual
on-board use, Also, winds aloft and temperature vari-
ations could be accounted for by precomputin g the
variation in thy:- stored variables using first-order
approximations. A method for enhancgd zeroth-order
approximation via special choice of state variables is
described in Ref. 26 and a ppears compatible with the
present approach,

conclusions

The numerical results boar out the following con-
clusions; first, that all trajectories which fair in
to the high-speed point consist of a rapid transition
onto a reference or skeletal path, If they .do not
originate on it, Secondly, the linear-feedback scheme
proposed is able to control the aircraft so that it
closely follows the appropriate neighbor of the nominal
path for large perturbations of initial conditions, A
3-D extension of the computational scheme is of in-
terest in which there aretwo dominant states, i.e,
heading-to-go in addition to energy-to-go. As a re-
sult, families of optimal paths which fair into the
dash-point will be needed, and the feedback coefficients
will be functions of two variables (represented via a
spline lattice) instead of one.
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^ h = - A V	 a (T-D) -	 a	
(5),a	 ^.

i,x 	0	 (9)

ati - 0
W	 (10)

and

vSinY

	

-xV 9Cosy + X hVCosY - ax	= 0	 (11)	
j

4)!

OPTIMAL SYMMETRIC FLIGHT WITH AN INTERMEDIATE VEHICLE MODEL*

=0111 ` IJ- V"k,,.111. ° 	 P. K. A. Menon*
1^^1LITI 	H. J. Kelle .."Q POOR	 k. M. Cliff	

N
Virginia Polytechnic Institute and State University 	
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Â
 1 6 ^&

Blacksburg, Virginia

Abstract	
Intermediate Vehicle Mrt,^,d 1_;

if

Optimal flight in the vertical plane with a
vehicle mode l intermediate in complexity between
point-mass and energy models is studied. Flight.
path angle takes on the role of a control variable.
Range-(,pen problems feature subares of vertical
flight and singular subares as previously studied.

The class of altitude-speed-range-time optimi-
zation p.roblerr ,. with fuel expenditure unspecified
is investigated and some interesting phenomena un-
covered. The maximum-lift-to -drag glide appears as
part of the family, final-time -open, with appropria-
te initial and terminal transient maneuvers. A

family of climb-range paths appears for thrust excee-
ding level-flight drag, some members exhibiting os-

cillations. Oscillatory paths generally fail the
Jacobi test for durations exceeding a period and
furnish a minimum only for short-duration problems.

Minimizing paths of long duration fallow a
certain corridor in the V-h chart. The features of
the family sharpen for the special case of thrust
and drag indepondent of altitude, and considerable
analytical attention is accorded to this for the
insight it provides to the more general model.

The problem of "steepest climb" is found to be
ill-posed with the vehicle model under consideration,
straight-vertically-upward maneuver sequences being
furnished by a family of paths alternating between
upward and downward vertical flight and including

a limiting "chattering" member,

Introduction

The point-mass dynamical model of aircraft

flight incorpvrating the assumption of thrust-along-
the-path is given by

g^ T.0) - sinY]	 (1)

h - Vsin ,,	 (2)

A n VcosY	 (3)

w -Q	 (4)

1 - a (I cos•e)	 (b)

Here V is airspeed, h altitude, x down range, 1^
weight fuel cunsumAd, Y flight-path angle, T
thrust, U drag, g the acceleration due to gravity,

L lift and Q the fuel-consumption rate,

The sweeping assumption that drag can be ap-

proximated by its level-flight value is next
invoked, This permits the deletion of equation (5)
and the elevation rr path angle Y to control status,

Lift coefficient, CL, or angle of attack 2, pre-
viously a control variable,is correspondingly
assumed to be such as to satisfy (5), There is

obviously trouble ahead with this modelling should
'r turnout to be large in optimized maneuvering or,

worse yet, should x exhibit jump behavior.

The ^ptimal-control problera to be treated,
then, is the minimization of a function of the

final values of the state variables and final time.
r.

There has been interest from the beginning of

optimal-flight studies in approximations featuring
simplified vehicle models. Representation of drag
as the drag for level flight leads to an inter-
mediate vehicle model in which path angle Y takes on

the role of a control variable and the order of the
system is reduced by one. An additional order-

reduction leads to an "energy-state model with al-
titude or speed as a control variable (Refs. 1, 2
and 3), This is reviewed in a companion paper
(Ref. 4), The present paper examines optimal sym-
metric flight with the intermediate vehicle model.

The variational Hamiltonian function is

H - %Vg ^(T-D) - SinY } + a hVSinY + XxVCosY

and the Euler-Lagrange equations are

^V= - aV 
a 

ap (T-D) - a hSinY - X xCosY - a v (7)

The analysis is based in part upon an explora-
tion of Euler solutions for the path-angle-as-
control model carried out in Ref. 5, The present
analysis examines higher-orderoptimality conditions
and "chattering-control" phenomena, The weaknesses
of the model will be seen as more extensive than

Previously noted.

*Research supported by NASA Langley Research Center
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;Aerospace Engineering Graduate Student, Student
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In the following, the ti * derivatives of equation

	

costates l ine favourtofet r i	 ehecontrolrtand varying
derivatives. Note that this is somewhat formal
since : may not exist. Using equations (7) - (11)
one may now proceed to eliminate those costates
which are variable in the Hamiltonian. Using (11)

	

X V * V ( X  - 
x xTany )	 (12)

V

and hence

a ^v(a - aTany _(a " %isec2y)
v 	 h=	 x	

)+ V
g	

h	 x	
(13)

substitutin for ^v from (12) in (8) and using

equation (7?

'h + VV ah X xTany ) ,aâ (T-0) + aW a	 ' 0	 (14)

Using (13) in (7) and using equation (1), one ob-

tairs a second expression for A h as

ah + a h g T-D +	 a(T-D)^

+ ax ^ - ySec2y - Tany T-D + 3 (T-D)(^

TV

Where	 E * h + V2 	 the specific energy,

In order to investigate the implications of this
complicated expression, consider first the case of
free final value of range x and fuel w. If the

final values of these variables are left o pen, then
the natural boundary conditions " x n O and ­0 apply
and the optimization problem is a trada-o 4 between
final values of time t, altitude h and airspeed V,
the maximum or minimum value of one of these varia-
bles or some function of these variables being,
sought without regard to range or fuel consumption.

In equation (17), if the transversality condition
for minimum time, H = -1 is imposed, the well-known
energy-climb schedule is obtained.

One notes tf,;at, in this case, equation (17) can
be satisfied either by cost • 0, vertical flight,
or by vanishing of the bracketed expression,viz.,
the partial derivative of specific excess power
V(T - D) with respect to altitude with specific energy
het; constant. Thus the solution of this, or any,
h-v-t o timum problem is made up of vertical climbs,
vertical dives and "energy climbs" pieced together
in the proper order. Similar considerations apply
if fuel expenditure rather than time is to be mini-
mized. In this case H = 0, `x w 0 and , q R 1, and
equation (17) yields the minimum-fuel-c Nmb path
with fixed throttle in the V-h plane.

If range is to be maximized or minimized with
final time and fuel unspecified, then \x • +1 and
H „ a - 0, and a first-order differential equation
for path inclination emerges as follows.

+AWV a	 %:0
	

(15)

Equations (la) ^.d (15) may now be used to obtain
an expression for ah in terms of 

xx 
and aw.

4 L;V(T

-
D) - a a V(

T-D)1

- a 	 33 V(T-D) - a V(T-D) 
+x

[Tany

.^ ^  ^—.sy

- ySec2y1 + XW [a
	 P 3V1	

- 0	
(l6)

The expressions (12) and (16) may be used for flimi
nating kv and % h in the Hamiltonian with the
followingf result;

Cosy H [rl - q 3^1 (V(T-D))^

-Cosy % N

	

	 ^()[,â  - g 5 V1V 
T-D I

^ V'	 - g a	 (T-D) - T-D V y	 0x 	 [j,h l' oV]	 ) Co
S sy^" 	 (17)

Note that

"
15

F 	 3V}

V2 [a - a a 1 (T-0)	 LSD Vy	 = 0
V VJ	 (18)

If one chooses ^ =-1 and a fixed value of H
(to be determined), with ^, w 0, expression (17) is

the Euler equation for maximizing range to climb
with fixed final time. With H - 0, a X * -1 and a
fixed value of ;^, similarly, the maximum range to
climb trajectory with fixed final value of fuel is

obtained. It may be noted that the maximum range
to climb problem is ill-posed in that the range to
climb for thrust greater than drag without time or
fuel constraints does not have a maximum or even
an upper-bound. Further, fixed-throttle range-fuel
trajectories are not of any significant interest
in practical situations. Hence, attention will be
focused on the problem of maximizing the range-to-
climb with a specified final time (fixed H, ^x = -1).

The system (1) - (3) and (18) generates a tra-
jectory family for the range problem. The possibi-

lity of obtaining analytical solution of the system
for the case of thrust and drag as arbitrary func-
tions of altitude and air speed is remote. However,
using the assumption of constant-density atmosphere,
wherein the thrust and drag depend on airspeed only,
one can obtain an analytical solution to this
system (Ref. 5). The expression (18) can be re-
written as

C- sy	 T-D 181i - f1V (T-D)	 (lg^

Time may be eliminated in favor of airspeed V as an
E = Constant	 independent variable.
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In the following, several tran,formations of
independent variable are carried out without

attention to monotonicity requirements, the thought
being to fit the solution segments oDtained into
families in due course. The temptation of range as
independent variable will to avoided, ht­rever, in
anticipation of purely vertical motion segments,
In the interest of brevity we desijnate u : (T-D)/W

i	 d(-Siny +u ) ►, V 	 a
t
	qa ^u	 (20)

oS dV	 g91J^a - Y dV

With altitude-dependence suppressed, the path angle
y is determined as the solution of the first-order

differential equation

1	 d ! Siny - u) " du 1	 (21)
To-s 5-	 av U

Further simplification is obtained oy another change

of independent variable, this time from V to u

1	 d ( Siny - u)	 1	 (22)
osy Fv- 	u

If the roles of independent and dependent variables

are now regarded as reversed, this equation takes

the form

d. +	 1 u 2	 t^ Sin	 = 0	 (23)
dy	 To 1,;	 osy

which is the form of the Bernoulli differential
equation

d + fl( y ) u2 + f2 ( y ) u s = 0	 (24)

with	 = 1. According to Kamke, (Ref. 6), this
equation has the solution

= E(y)^f ( dy (25)

where

E( y) _ if2dy
	

(26)

with identification of fl and f2 as

f l ( y ) =	 1

	

COSY	
(27)

f2( y ) - 1 Cosy	 (28)

The solut3ioCn s(y25) becomes as follows

	

f ^	 dy	 1 nCosy
E( y ) 

= e Cosy	
= e	 = Cosy	 (29)

1 = Cos y

If

dy 	+ C = Siny + C Cosy	 (30)
u	

Cos2y

Before expressing this relationship in the form

we relate the integration constant C to
equilibrium values of a and y corresponding to un-

acielerated flight. Such values may be designated
with a superscribed bar:

U = Siny	 (31)

C = Cot—(	 (32)

The solution may then be expressed as:

51ny Siny + Cos y' Cosy	 (33)

u

or as

y X Y + Coi l
)
	(34)

Here a is the value of a in unaccelerated flight and

- Sin 1 u	 (35)

In Fig. 1, the solution (34) is illustrated for
various values of Z, The range of angle ti has been
restricted to + 180 0 in this plot.

With this solution at hand, ;;he state histories

can be generated. If the thrust is taken as zero,
the state-Euler system produces the flattest-glide

trajectory, flown with maximum lift-to-drag ratio,
along with a family of transients to and from this

point (Fig. 2). When a positive margin of thrust
over drag exists, a family of oscillatory solutions
is generated for various values of u as shown in
Fig. 3. It may be noted in Fig. 3 that the inner-

most point corresponding to u A .2 in V- y space
corresponds to flight at (T-D)max, while along the

outermost closed path, the flight path angle Y
switches between t 900.

With the availability of the luler solution
(30) to the maximum-range problem with altitude

dependence suppressed, one may proceed to obtain a
similar solution to the more general Euler equation

(17) using variation of parameters (Ref. 7).
Equation (17) may be written as

Y -g lC
	

V = CosZy a
	

aYVu)

xVu

	

+ Cos 2y AW	
-3V [^^ 	

(36)
xVu

As in equation (22), the independent variable'

Is charged from time to airspeed resulting in

dy ( Siny - u) = CoSY du - Cos 2y H	 1 d (Vu)

dV	 u 3V	 ax ^ UV

+ Cos2y 
'W 

_Q_ dV 	 (37)

Rearranging, one obtains

dy( Siny - u) - Cosy aauu=-Cos2yH 
I

dd 	 (Vu)

u	 x V u	 (38)

+ Cos2y 
XW 

02 d V
a x V2^i UT [r]

Equation (30) is the analytical solution to'the

differential equ-?tion (38) with H and \ 4̂ both zero.
The expression (30) may be differentiated with

respect to airspeed to obtain

uI au = ( Cosy - C Siny ) dy + ad CC Cosy	 (39)

Note here tnat C is no longer a constant, but a
function of the independent variable V. Substituting

for a in (39) from (30)

V

h

t^ u

CYJ

r

f

e

F r

^	 f

t

1
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n 

- LCOSY - C Sint ) •2V + UY,

u a	
nY +	 OS5 	 (a0)

Using equation (40) in (38)

	

Cus 2	dC R - Cos 2y H 1 d (Vu)
Siny + C Cosy aV	 7x 7V ;

 
3P

+ Cos2y ^ V ^V [-r] (41)

Since	 u	 1	 from (30),	 R J
51ny + C Cosy

Cos2Y d„^C', 	Cos 2y( - ^	 + _I d 1
x V u	 Vu	 f

+%+ adu- 1 dQ^l	 (42)

	

x V u Vu 

V 

V u 	J

The quantities within the }brackets can be identif-
ied as

-d	 1.	 1	 + 1	 du	 (43)
3V u V V^a2 dP

and

From Which

3 = ax W L^^ -	 [^-]	
(45)

X

Equation (45) is readily integrated to yield

	

x	 x

where C l is an arbitrary constant. Hence for the
time-range-fuel problem, the solution with altitude

dependence suppressed is

1 = Siny + (	 u	 + C l )Cosy	 (47)

u	 ` x	 x 

To express the above result in the form 'r =
we need to relate the integration constant

cl to equilibrium values of u and y corresponding
to unaccelerated flight. Unlike the situation in
the simpler problem, the interpretation of equation

(47) is not straightforward.

From a practical viewpoint the time-range

problem is of main interest since minimum-fuel
problems with fixed throttle are rare. Fuel-range
problem will not be discussed further in the present
paper and in subsequent development the fuel mul-

tiplier try will be taken as zero.

Investigation of equilibrium points with
^y = 0 results in a plot of the values of H/a vs

airspeed as shown in Fig. 4 for a parabolic (f- D)
distribution illustrated in Fig. 5. 	 In Fig. 4

three separate regimes can be identified. H/ax
values to the left of the (T-D)ma velocity are

positive while those between the ^T-D)max point and

the V( T - D )max point have a negative sign. All H/'x
values to the right of the speed for V(T-D)max are
positive. Any of these values may be used to

evaluate the arbitrary constant cl as fol';ows, As

in (31)

µ Sint	 ORiGNAL PM.'': FcJ	 (48)
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Equilibrium value of H	 (49)

Xx

CotY - H	 1	 + Cl
	 (50)

Tx
or

C1 = CotY - H 1	 (51)
a, Va

using (51) in (47)

1	 Siny + [L JJ 1	 -	 1 1j + CotY ]Cosy (52)
u	 axlvy	 (•,1

putting e = [L j 1	 -	 1	 + Coty and using

ax 1 V u	 7

a well known Trignometric identity,

Y = Tan 
	

+ coil 

	
(53)

Equation (53) is the Euler solution to the
time-range problem with altitude dependence of u

suppressed. In Figs. 5, 7 and 8, the analytical
solution evaluated for representative H/kx values
from each of the three regimes is shown. Fig. 6
and 7 indicate oscillatory solutions and are in the
neighborhood of a stable equilibrium point. The
similarity of these figures to Fig. 3 is striking.

The solutions in Fig. 8 are non-oscillatory and bear
some resemblance to. Fig, 2.

Summarizing, one notes that the range problem

has oscillatory solutions when a positive margin of
thrust over drag exists. With zero thrust the

solution obtained is the flattest glide with a
family of transients to and from the maximum lift-
to-drag point. For the time-range problem, values

of H/ax to the left (low speed end) of the V(T-D)max
point produce oscillatory solution while on the

right of the V(T-D)x point a family of transients
to and from the equ^^ibrium point defined by the
choice of H/ax is obtained.

Legendre-Clebsch necessary condition;

From the Euler-Lagrange equations, with lW = 0

aH _ -
^V 

g Cosy + ^ h V cosy - 
^x V Siny	 (54)

3Y

and

a2H = ( 
a V g 

- a h V ) Siny - Xx V Cosy	 (55)

aY2

Seating the left-hand side of equation (54) to

zero as required for a stationary minimum of H leads

to

Tany = a hV - a Vg or NVg - a hV	 (56)

a x v	 - axV

From (56), then Siny = ( a hV - ^Vg )a	
(57)

X - %Vg ) + axV

s

i^

i

R

is ..

1

1

!^ k	 s
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3x2 ax2	
.........,3X2

as
1 0

3a
20

ai
.

no

ax n axn	
........, axn

ax
1 0

as
2 0

as
n0

ax apt

as
1 0

a7,
2 0

A
n0

(61) ,

a

w

oNI0INA WE,  f
OF ►ooR QR4' .

and

Cosy N	
axV a	

(58)
V( ahV - aV5 )' + ^x

where z . f 1

Using (57) and (58) in (55), it is possible to
determine a,

first valve of the independent variable x x x* > xo
for which such a nontrivial system can be found

defines a conjugate point,

Following the analysis of Ref. 9 for the Mayer

problem, the rank of the matrix of variations of

states and the multiplier corres ponding to the state

being minimized with respect to the initial values

^^ zcostates is evaluated along the test extremal,

Nxt, one may employ the transversality
conditions for the range problem, viz,x x = 1 for	 The rank of
range minimization and ? X = -1 for range maximiza-

tion. These lead to

ax = 1, a 2H > 0 if y lies in the second or third

3Y 	 quadrant	 (59)

t•.

ax = -1, 3 2H <0 if Y lies in the first or fourth

aye 	 quadrant	 (60)

It is apparent that with no restrictions on
the path inclination, the minimum-range trajectory
is that which maximizes the range in the negative
direction. if one imposes an artificial limit on

the path angle v, say -90 K y < + 90, the minimum

range trajectories are v=rtical up-down flight
segments and any (V,h) pair can be reached in zero
range if there exists a positive margin of thrust
over drag. Thus, with the vehicle model considered,
there is no limit to the steepness of climb.

The Legendre-Clebsch necessary conditions are

met in strengthened form for the maximum-range
problem for values of the path angle y in the first

or fourth quadrants. However, physical reasoning
makes clear that a range maximization problem with-

out time or fuel constraints will not possess a
proper maximum or even an upper bound. In view of

the above, the problem of interest is to maximize
the range to climb from an initial (V,h) pair to a

final (V,h) pair in a fixed time. This problem is
of value in studies of the type reported in Ref, 8
for a point-mass-modelled vehicle.

It may be noted at this point that in the cases

of time and/or fuel minimization problems with

range open, the Legendre-Clebsch necessary condition
is met only in weak form along central arcs and,
hence, these trajectories fall into the class of
singular extremals.

ConJUgate-point test:

The Legendre-Clebsch necessary condition is met
with a margin for the time-range problem and hence

the Euler so lotion (17) with +v = 0 furnishes a
relative minimum for initial and terminal points
sufficiently close together. For extremals of
finite length, 'iowever, the task of ensuring that
the second vari6tion is non-negative for admissible
neighboring paths leads to the accessory-minimum

problem in the calculus of variations, This in
essence boils down to a search for a system of ad-

missible variations, not identically zero, which
offer the most severe competition in the sense of
minimizing the second variation. If a system of
nonzero variations can be found which makes the

second variation zero, then it is clear that a

neighboring path 4 s competitive and that the tes+

extremal furnishes at best an improper minimum and
at worst a merely stationary value (Ref. 9). The

provides the criterion for the existence of a conju-

gate point. If the rank of the test matrix (61)
drops at any point along the test extremal, it is

indicative of the occurrence of a conjugate point.

For the time-range problem, if the independent
variable is changed from time to range, the equa-

tions of motion become

h ' = Tany	 (62)

V^	 T-D	 - g Tany	 (63)
V Cosy	 V

The optimal-control problem then is to maximize

the final value of altitude W for a sperAfied
range with time fixed. With the interpretation of

H as the time multiplier, the test matrix (61) be-

comes

av	 av	 aV	 aV	 av	 av

axh0 3HO ay0 	Aho allo ay0

at	 at	 at	 at	 at	 at

arh aHO BYO 	aah 710 aYO (64)
0	 0

ax 	 aa h 	 aA h	 1	 0	 0
aah 

0 
aHO ay0

Note that time appears in this problem as a state-

like variable with

t'(65)Cosy 

A prime on the variables denote differentiation with

respect to the range variable x.

From (64), the sign of

av at - av .at	 (66)
ay0 aH0 aH0 aY0

evaluated along the . Euler solution determines the

rank of the matrix 'a ). If the sign changes at

any point on the t',	 nge trajectory it is indi-

cative of a conjugate	 t.

M	 '

P
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The Euler solution obtained for the time-range

problem, with altitude dependence of p suppressed,
may now be tested for conjugate points, In view of
the particularly simple form of the conjugate-point-

test for this problem, it seems reasonable to
attempt to obtain analytical approximations for the

partial derivatives in (66).

Linearizing the equations of motion and the
Euler equation (17) with range as the independent

variable about an equilibrium point at a particular

altitude,

6V = a0 6V - a i 6y	 (67)

6t , _ -a 2 6V + a 3 6Y	 (68)

6y' = a 4 6V - a 56y + a 6 6H	 (69)

OR(GIT4,1L, Pil

01: POOR QUALJIV
T . a

oa 3 

a

a l a 2	(81)

and canct.l l ing out coit.,*n constants in the numera-
tor, the e quations (76)	 (79) can be brought to
the form

2
6V(s) n 	 wn	

(82)70)
n

2

6V s) _	 wn	 (83)
6	 )	 s(s2++)n)

6O
6t 

s) _ (l+Ts)w n	(84)

)	 s(s2+wn )

,

Where

a 0 -a (T-D)	 (70)
Cosy aV

a l = f
	

(71)

a 2 = 	 1	 (72)

V Cosy

a 3 = Siny

VCos2y

a 4 = -Cosy g H + ^a TD -— 1 - Cosy H

V4	 ^x	 "'	 V`(T-D) C	 V	 Yx

+  	 - Cosy H

	

 j aT-Df [l

	 V	 XxJ
+ 72 R) 	 Cosy H _ 1 (73)
V T-D a V2	 I V	 ax	I

a6 = a 0
	

(74)

a 6 = Cos_ g CV a(T-D) + (T-D)]

	
(75)

V( -D3) 
X
x 	a
	

J

Equations (67), (68) and (69) constitute a linear,
constant-coefficient system which can be put in the
following form usinci Laplace transforms (initial
conditions on 4V and St are zero)

5V(s)	 =- al	 (76)
6M) s +(al^)

6V(s) _	 - a la6	 (77)
6H(0)	 s [ s 2 +(a 

1 
a4-aoa5)]

6t s) 	 [(
aoa 3 -a l a 2 )-a 3 s]	 (78)

6y )
	 s [sn+(ala4-a0a5)]

6t(s) 	
[(aoa3 

ala2)-a3s ] 
a6	

(79)
6H(s)2

puttingn = (a
l 4-aoa5)	

(80)

and

dt s) _ (1+Ts)w^	 (85)

6H 0)= s (s l+W2)

Equations (84) and (85) may be further simpli-
fied using the expression (82) and (83),

66Y S) - 
6H 

s) + T 
SV 

s	 (86)

2

6H s)
	

W2 2	 + T 6V s
	

(87)
s (s +wn)

Equations (86) and (87) imply

dtix) = 6V(x) + T 6y(x)	 (88)

D	

6

0

6t (X)

2

	

= L l _ wn	 + T 6V x)	 (89)
6H0	(s2 n	 6H0

using (88) and (89) in (66)

aV . at	 aV , at x 6v(x)c 1 	 wn
ay0 a FO 75 0 ayo 6y0 	 s (^

2	

)n

aV x) 2
6H0	 (90)

And consequently, one needs to obtain the inverse
transform of only three transfer functions, namely

2

	

„V s) , 6V s)	 wn
5y0	6H s	 s ( +

2
when wn is positive, the roots of the denominator
polynomial are conjugates and

aV	 at - av at	 wnxSin( wn x) + 2Cos(w nx)- 2

ay0 aH0	aH0 ayo	 (91)

The right hand side of (91), after b0 ng zero at

x = 0, will subsequently become zero at

X = Wn	
(92)

implying that conjugate points will occur every full
cycle of oscillatory solution. Hence, if the

r

a

e

i

u	 '^
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equilibrium point for the given H/a is stable, i.e.
it produces an oscillatory solution.' a conjugate
point will occur at the end of one full cycle of
the oscillation. On the other hand, if w11 is
negative, the roots are real and distinct, symmetric

about the imaginary axis. In this erse

aV , at - 3V at	
(93)ayo aH^, O Sy0

-x.d.Sinh(dx) + . 2 Cosh(dx) - 2

Where	 d =w2^n I
Expression (93) is zero only at x $ 0. In this case,

conjugate points do not occur, From (93), then, if
the equilibrium point for the given H /ax is unstable,

conjugate points will not occur.

The conjugate-point test is now applied to the

three regimes of H /%x described earlier, As ex-
pected, for all values of H/ax to the left of V(T-D)
max point, conjugate points occur, indicating that
the Euler solutions obtained with these values of
H/= do not afford a maximum to the time-range

problem over long intervals. Euler Solutions ob-

tained with H/%x to the right of the V(T-D)max point,
on the other hand, satisfy the Legendre-Clebsch
necessary conditions and Jacobi's necessary con-
dition, and hence are optimal trajectories for the

time-range problem,

Numerical solution of the time-range problem;

With the insight gained for the time-range
problem with altitude dependence of thrust and drag

suppressed, we now embark upon a numerical study of
the more general case in which the aerodynamic coef-
ficients are functions of Mach number and the thrust

is Mach-altitude dependent. The data for a version

of the F-4 aircraft with afterburner operative are
used in this study, A cubic-spline representation
(Ref. 10) is used to compute the values of zero

lift drag coefficient and the induced-drag coef-
ficient. The drag coefficient is then computed as

CD = CDo (M) + K(M) C^

Where	 C L =	 W	 and Co and K are standard

?V2S notatign.

The drag is then obtained as the usual product

of drag coefficient, dynamic pressure and the air-
craft wing area. A cubic-spline lattice (Ref. 10)

is used to compute the value of thrust at a given
altitude and Mach number. Atmosphere density and

speed of sound as functions of altitude are inter-
polated from standard atmosphere tables using cubic
splines. The system differential equations are
integrated using a fifth-order Runge-Kutta-Verner
method with variable step size.

A plot of HP-x vs airspeed for equilibrium
flight conditions corresponding to unaccelerated

2

flight with specific energy E = h + Zq , frozen

at 60,000'is shown in Fig. 9. The three regimes of
H/ •.x identified earlier in this paper can be seen in
Fig. 9. Numerical integration of the Euler equation
with H/t values picked from each of these regimes

indicate that the solution for H/ `x values to the

left of V(T-D)max are oscillatory. Numerical

solution using H/Xx to the right of V(T-D), 	point

(high speed end) are non oscillatory and v o fient in

character.

Next, a numerical conjugate-point test is set

up based on a scheme suggested by Cicala (Ref, 11),
In this scheme the partial derivatives with respect

to 'lo 
required in the matrix (64) are calculated

approximately in terms of difference quotients.
Small increments in initial ai are employed in the

evaluation of neighboring solutions of the original
system of Euler equation. The conjugate-point test

was carried out for various values of H/Ax picked

from Fig. 9. It was found as expected that only the

non-oscillatory trajectories corresponding to H/ax

volues on the right of V(T-D)max satisfy the no

conjugate point conditiosi. Oscillatory trajectories
indicate the existence of a conjugate point after a
cycle of oscillation.

From the foregoing it is clear that the solu-

tion to time-range optimal-control problems are
nonoscillatory and violently unstable in character,

Within the permissible range of H/Xx, as H/Xx in-
creases, the Euler solutions approach the energy

climb schedule in the V,h plane, Of particular
interest i;7 practical applications is that trajec-

tory which terminates at the "dash-point" on 'the
flight envelope, the maximum-level-flight-speed

point. To determine the value of H /Xx which will
accomplish this, a plot of the locus of equilibrium
points corresponding to unaccelerated flight at
constant energy is made. Once this value H/ax is

found, what remains to obtain the optimal trajectory
is to determine the initial value of the control
variable y for a given set of initial conditions on
altitude and airspeed.

In Fig, 10 the level-flight envelope for the

F-4 aircraft is shown along with the energy-climb
schedule. The discontinuity in the energy-climb
schedule due to transonic drag rise may be noted

(Ref. 12). The curve B is the locus of equilibrium
points at each energy level corresponding to un-
accelerated flight with the appropriate H/ax. The

discontinuity due to transonic drag rise is again
visible. An Euler solution for initial values of
airspeed and altitude close to the equilibrium locus
is also shown. To determine this trajectory an
iteration was underte.ken on the initial value of

the control variable Y. With quadruple precision
on the IBM-370/158, the initial path angle had to
be determined to 13 significant digits. To illus-

trate the sensitivity of the Euler solution to the
initial value of path angle •r, the last digit of Yo

is perturbed in the positive and negative sense with

the trajectories 1 and 2 shown in Fig. 10 resulting.

A few more Euler solutions with initial condi-
tions far removed from the equilibrium locus are

shown in Fig. 11.

Discussions and Conclusions;

In this paper, optimal flight in the vertical

plane with a vehicle model intermediate in com-

plexity between point-mass and energy models was

studied. Flight path angle takes on the role of
control variable in the model and range-open prob-
lems feature subares of vertical flight and singular

subares as previously studied.

rr.
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'	 Minimum-range climb problem (the steepest AmbPOL 7
of Ref. 15) has been found tc+ have no minimum, not

even a lower bound,	 In reference 15, the steepest- 1,
climb problem was studied using the Green's theorem
device of reference 13 and 14. 	 There is an impor-
tant difference in vehicle modelling from that of
the present paper which should be noted as a key to
resolving disparities between the character of

optimal	 paths emerging.	 Vie analysis of Ref, 13 and

15 in essence replace cosy in equation (3) with 2.

unity so that the problem solved is maximum altitude

e	 in a given distance (i,e.arc length)	 rather than in

a given range.	 This is a necessity with the linear-

;	 integral approach which can accomodate only problems

`	 of dimension two and very special form of state

equations.	 The solution to the distance climb con- 3,
lists of a central	 path flown along a(T-D)max locus
in the V-.h plane with vertical	 climb and dive tran-
sitions at the ends to meet specified boundary con-

ditions.

4,
From physical considerations it can be seen that

when a positive margin of thrust over drag exists,

-	 the maximum-range climb trajectory without time or 5,

fuel constraints has no proper maximum nor an upper

bound,	 In view of this fact major attention has

been accorded to the time-range problem,
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Abstract

Minimum-time climbs in "energy" approximations
are reviewed and further consideration given to
choice of variables. A pair of variables which
seem to offer attractive replacements for altitude
and airspeed in singular-perturbation procedures is
suggested. Use of the new Variables in an energy-
madelled climb-dash problem is illustrated.

Introduction

In Ref. 1 ► Fritz Kaiser, a flight-test engineer
at Hesserrschmitt, A. G., introduced the concept of
"GESAMTHOHE" ("resultant height") in connection
with aircraft minimum-time climbs. This is the sum
of potential and kinetic energy per unit weight.
Subsequ nttly it has been referred to as "energy
height"^ 3 and "specific energy".4 Its use as a
state variable in trajectory work is attractive be-
cause it is a '"sl	 r'" variable than either alti-
tude or velocity, 0^ ► 7 Attempts to synthesize
"slow" state variables are described in Refs.'6 and
7 in connection with singular-perturbation proce-
dures. The present development attempts to synthe-
size both "fast" and "slow" variables for the
minimum-time-to-climb problem along lines explored
earlier in an appendix to Ref. 6.

Climb Equations

The equations of motion for climbing flight are
given in terms of conventional state variables,
altitude, h, flight-path angle, y, and velocity,
V. as

fi=V sin y	 (1)

Y f (W
1 - cos yJ	 (Z)

V =SIT-PI - g sin y	 (3)

Here T is thrust, D drag, L lift and g the accele-
ration of gravity. An assumption of thrust-along-
the-path has been incorporated.

Energy-Modellin4 Simalifications

An essential feature of "energy" approximation
is that drag be treated as a function of h and V
only. This is consistent with approximation of
sin y and cos y via expansion in powers of y
through first-order terms only and with deletion
of the y term as negligible -- another feature es-
sential to reduction in order. With these simpli-
fications the system becomes

^i	 V

y.IV,- gy

where 0(h,V) ii evaluated for L - W.

"Slow"-Variable Choice

Two new variab:es, o +nd o, are to be intro-
duced in place of h and V, ^ to be "slow" and
"fast".

The equction of state for o is

a^ DO fi + 7

6	 T-D J + V aTi - g B4	 (6)]

If one insists that$ be independent of the
control-like variable, y, then ^ must satisfy the
partial differential equation

VI-g=0	 (7)

This is satisfied by

2

" h+ 9	 (B)

or byany once-differentiable function of this ex-
pression, 6 Thus ^ - E, specific energy, is "slow"
in the sense specified.

"Fast'"-Variable-Choice Considerations

It has been usual to ado t as the second state
variable, V", either V5 or h./ Either is suitable
for analysis of the "slow" motion, given by the
single state equation

E.VT-D
W

For minimum-time passe a to higher energy levels,
the right member of (9^ is maximized with respect
to V or h at constant E. The expression on the
right of (7) is "specific excesspower", P , of the
flight-performance literature (e.g. Ref. 4 and
simply p later in the present paper. With a more
general choice of *(V,h), the maximization of (9)
is done with respect to this variable after V +end h
have been replaced by suitable functions of 0 and 0
representing the inverse tra p formation. The
resulting values of V, h and are the same, how-
ever.

(9)
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(10)

whiQ is, to linear approximation in y, the path
angle for unaccelerated climb, More generally the
expression

n 	 li t v U

is to be solved

40, [W-' - 9YI X 0

 to obtain the zeroth-order "outer"
approximation for y. The choice

W"1dn,
E

suggests itself for compatibility wits# the outer
solution, for

•f
	 Z-	 Vy+	 a

	
rT-D	

9YI	 (13)

Here
u	

p'VT-D
	

(14)

is "specific excess power," a known function of h
and V, This choice of ^ is seen to generate
zeroth-order y consistent with (4) and (5) along
the outer solution.

Choice of "Fast" Variable

Contours m - E - const. and 0 a const. are
shown in Fig, 1 for the aircraft data cf Ref. 9 (a
version of the F-4). The contours of 0 a constant
indicate a breakdown of one-to-one mapping
associated with ,lumps of the en e-climb path,
0	 0, between ridges of p(h,V)

rgy
in fact, the

mapping 0,0 + h, V is two-to-one and even three-to-
one within the flight envelope. This local non-
invertibility represents a less-than-ideal feature
for a coordinate transformation; however, one does
not actually have to transform to the new variables
to exploit the concept.

Flight-path angle y is shown as a function of
m = E in Fig. 2 for three choices of "fast"
variables h, V and ^. The contribution of the
"outer" solution (shown) dominates the zeroth-order
composite solution. Experience is that the calcu-
lation of first- and higher-order composites is
intricate and expensive. 0 Thus it makes sense to
choose variables carefully so as to enhance the
fidelity of the zeroth-order solution as far as
possible.

(12)
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Singular-Perturbation Analysis 	 Climb-bash Problem

The choice of ^(V,h) matters, however, in the 	 Consider as an application the climb-dash
determination of y along the "slow-motion" (or 	 problem$ in which a minimum-time trat Cory to a
"outer") solution ► as y must be such that „ 0, in	 remote value of x is sought, where xis down-range

=	 the procedure of Ref, 7, With the choice of ^ h 	 and, for small y is defined by
as in Ref, 7, the approximation Y n 0 is obtained,
while if * b V is assumed, then 	 z a V	 (15)

The character of the solution is that of a combined
climb-dash generally fester than an nnergy climb
(Fig, 3) fairing into sustaineJ flight at the high-
speed point on the level-flight envelope, y as a
function of E is shown in Fig. 4 for the three
choices of fast variable. Solutions of a cor-
responding point-mass-modelled problem for dif-
ferent aircraft data are studied in Ref, 8,
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