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SUMMARY

Several topics in optimal symmetric flight of airbreathing vehicles ..

are examined. In one study an approximation scheme designed for on-

board real-time energy management of climb-dash is developed and calcu-

lations for a high-performance aircraft presented. In another a vehicle

model intermediate in complexity between energy and point-mass models is

explored and some quirks in optimal-flight characteristics peculiar to

the model uncovered. In yet another study, energy-modelling procedures

are re-examined with a view to stretching the range of validity of

zeroth-order approximation by special choice of state variables. In a

final study time-fuel tradeoffs in cruise-dash are examined for the

consequences of nonconvexities appearing in the classical steady cruise-

dash model. Two appendices provide retrospective looks at two early

publications on energy modelling (Ref. 22) and related optimal-

control theory (Ref. 58).
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CHAPTER1

INTRODUCTION

The present report brings together four studies of optimal sym-

metric flight which have order-reduction as a commonfeature. The

research started out as an effort to implement a singular-perturbation

approach to optimal flight, that of Ref. 25, in closed-loop form along

the lines of a concept put forth in Ref. 20. The effort stayed on

track during a minimum-time climb-dash phase which appears as Chapter 2.

It wandered off down an interesting by-way offered by a vehicle model

intermediate in complexity between the familiar point-mass and "energy"

models, which had been previously employed in the literature but not

thoroughly researched. The quirks discovered in this vehicle model are

reported in Chapter 3 and are of considerable research interest; however,

the intermediate vehicle model does not appear to have sufficient merit

for use in the applications work of main interest.

In the course of the minimum-time climb-dash research it became

evident that a need exists to stretch the zeroth-order asymptotic theory

as far as possible and that there is freedom in choice of statevariables

which recommends itself for this purpose. Chapter 4 reports the synthesis

of two "fast" state variables potentially useful in this connection.

Although further research along these lines appears worthwhile, it is

already clear that possible improvements make the scheme attractive for

applications.
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The fourth study, that of Chapter5, began as a seeminglystraight-

forwardexercise to incorporatea fuel constraint. Analysisof the

"slowest"motions, cruise-dash,encounteredcomplicationsdue to the

appearanceof nonconvexityphenomena,with resultingambiguities. This

matter deservesfurther study;even moreso, perhaps,does the related

"chattering"phenomenonwhich appears in energy approximation,and which

is relatedto oscillatorybehaviorin point-massapproximation.

An excursioninto the origin of the "energy-climb"technique,which

traces back to WWII Messerschmitt,appearsas AppendixA. A look at a

mathematicaltechniquefor treatingoptimal-controlproblemsof small

dimensionlinear in a scalar control (Ref.57) appearsas Appendix B.

The techniquelends itself to the energy-climbproblemand one of Mancill's

resultsis recognizableas the generalizedLegendre-Clebschconditionfor

the special low-dimensionalproblem.
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SECTION2.1

PREFACE

On-board flight control and guidance is a subject which has had

varying reception in different fields of Aerospace Engineering. In

the area of unmanned missiles there has been extensive research, with

many resulting applications, in developing on-board guidance systems,

as reported in the survey papers, Refs. 1 and 2. These studies have

encompassed many new optimal control and even differential gaming ideas

(Ref. 3): in this field the on-board flight computer is an accepted

and usually necessary part of the guidance system. While conventional

homing and proportional navigation guidance laws are simple, and require

minimal computation, more complex guidance schemes may be implemented on-

board by the use of singular perturbation methodology, as in Ref. 4.

The willingness to apply state-of-the-art theoretical developments

to manned aircraft is not as evident. This may be the result of a more

conservative approach in applying new technology to machines which are

responsible for peoples' lives, machines which are also extremely ex-

pensive, generally larger and more complex than many missiles. However

one of the greatest obstacles may be the threatened removal of authority

from the pilot; despite the •existence of sophisticated autopilots on many

expensive aircraft, there is an aversion to total automation, particular-

ly on the part of the pilot. As a result there is a significant gap be-

• tween the flight-path optimization and differential gaming results which

have been achieved in the !ast twenty years, and their applications in

on-board use. A part of this is due to the limited computational resources

4



available,particularlyon fighterand small generalaviationaircraft,

where weight and space are at a premium. Some of the latest develop-

ments relatingto the latter case are given in Ref. 5. On the other

hand in the area of large transportaircraft the cost, weight and com-

plexityof a small main-framecomputer is justified,but this has yet to

be implemented. In civil aviationmuch research has been done in the

area of trajectoryoptimization,with particularemphasis on efficient

fuel usage and minimizingthe direct operatingcost. Attentionhas

focusedon the calculationof sub-optimalflight paths, using order-

reductionto simplifythe problem,as in Refs. 6-9. Burrows (Ref. 6)

used singularperturbationsand order reductionto derive sub-optimal

short and long haul trajectories,with on-boardcorrectionsto speed and

energy errors based on expandingtheperformance index to second order,

which he found to be more effectivethan simple linear feedback. Sorenson

and Waters IRef. 7) used an assumedconstantenergy cruise (as did

Erzbergerand Lee, Ref. 8), and pointedout that the on-boardflight

controlneeds to be coordinatedwith the ATC system,so that fuel saved

during the flight is not wasted due to trafficcongestionat the terminal

area. Chakravartyand Vagners (Ref. 9) attemptedto providejustification

for their state variableselectionthroughthe use of non-dimensional-

ization. Transitionsonto fuel-optimalclimbs and descents are studied

in Ref. lO, where they are used to derive a near-optimalfeedbackcontrol

law. Sub-optimalterminalguidance is examinedby Erzberger,Ref. II,

for a fixed-wingaircraft,and by Beser, Ref. 12, for a tilt-rotorair-

craft. Optimal shipboardterminalguidance is studied in Refs. 13-15.



Despite the active interest and work, as described above, in this area

the applications have lagged behind. A description, for example, is

given in Ref. 16 of the DC-9-80 Digital Flight Guidance System; here

the emphasis is on establishing reliability and safety criteria for

the engine and flight control systems. It seems safe to say that in

this area applications efforts have focused on feasibility and re-

liability rather than optimality. As mentioned earlier, the computat-

ional resources on a fighter aircraft are even more limited than on a

transport, for obvious reasons of space and weight constraints. In

contrast with large transports there is a much greater range of ap-

plications for on-board optimal control for fighter aircraft. This is

because a fighter can and often has to perform a much wider range of

maneuvers (in terms of flight path angles and bank angles for instance)

as studied in Refs. 17-19. In many missions there is less, if any, a

priori knowledge of the flight path. Also it is often desirable for

security to minimize the communication with the ground, which eliminates

the possibility of solving flight-control problems on the ground and

relaying commandsto the air.

With this background it is the objective of this study to in-

vestigate on-board real-time flight control, with the intention of

developing algorithms which are simple enough to be used in practice,

for a variety of missions involving three-dimensional (3-D) flight. -

Initially an approach is developed which is restricted to the intercept

mission in symmetric flight, based on Ref. 20. Extensive computation

6



is requiredon the ground prior to the mission but the ensuing on-

board exploitationis extremelysimple. The scheme takes advantage

of the boundary-layerstructurecommon in singularperturbations,

studiedin Ref. 21, arisingwith the multiple time scales appropriate

to aircraftdynamics. Energymodellingof aircraft,as first examined

in Refs. 22-24 and extensivelydeveloped in Refs. 25-27 is used as the

startingpoint for the analysis. In the symmetriccase, a nominalpath

is generatedwhich fairs into the dash or cruise state. Feedbackco-

efficientsare found as functionsof the remainingenergy-to-go(dash

energy less currentenergy), along the nominal path. These serve to

generatetransitionstowardsthe nominal path, closed loop and to counter

disturbances. In this situationthe guidancemethod is similarto the

neighboring-optimalguidancemethodsof Refs. 28-32; these have been ap-

pliedtospace shuttlere-entryproblems,Refs. 33-35, and orbital trans-

fer guidance,Refs. 36-37. However there are two significantdifferences

betweenthis study and these references. In the presentwork the gain

indexingis done in terms of the current energy;this avoids the problems

encounteredin estimatingthe index time, as in the time-to-goor min-

distancemethods. Also, for the extensionto 3-D flight, familiesof

referencepaths are used insteadof a single trajectory,with heading-to-

go as the additionalrunningvariable.

2.1.1 Problem Formulation

The overallproblem is to develop an on-board,real-timeflight

controlsYstem,which is near-optimal,for an aircraftflying an



interceptmission,with arbitraryinitialconditions. The equations

of motion for a point-massmodel of an aircraftcan be written:

: V(nT - D)/W (2-I) .

= Vsiny (2-2)

y = (Lcos_- Wcosy)/mV (2-3)

= Lsinp/mVcosy (2-4)

= Vcosycosx (2-5)

: Vcosysinx (2-6)

m = -nQ (2-7)

These equationsembody the assumptionsof thrust along the path, zero

side-force,and flight over a flat earth with constant gravity. Also

winds aloft are assumedto be zero, and the atmosphericproperties

standard•

2.1.2 SymmetricFlight

The first approachwas to restrict theproblem and simplify the

model considerably,to reduce the analyticaland computationalburden,

during the initial researchand developmentof the guidancescheme.

The restrictions in the problem are the following: to consider only _.

symmetric flight, with fuel open, i.e. fuel optimization is not examined,

which leads to maximumthrust in most maneuvers of practical interest.



The target is assumedto be at a sufficientdistancefrom the inter-

ceptor that a climb-dashis required: in other words a range-optimal

climb to the dash point on the level flight envelope,blending into a

steady-statedash. This sequenceends with a terminaltransient,which

is consideredbrieflyin the next chapter. The time spent during the

climb is assumed to be much smallerthan the time spent at the dash

state. The restrictionin the aircraftmodel is that the variationin

mass due to the fuel expenditureis ignored. Under these limitations,

the equationsof motion are reducedto:

: V(nT - D)/W (2-8)

6 : Vsiny (2-9)

= (L - Wcosy)/mV (2-I0)

x = Vcosy (2-11)

2.1.3 AerodynamicModelling

The aircraftwhich is used as an exampleto performnumericalcal-

culationsis a high-performanceinterceptor. The drag is modelledas

a parabolicfunctionof the control:

CD (2-12)
= CDo + CDcL2 CL2

The coefficientsCDo and CDcL2 are functionsof Mach Number:

CD = CDo(M) (2-13)

9



and

CDck2 : CDcL2(M) (2-14)

The thrust is a functionof Mach Number and altitude:

T : T(M,h)

The way in which these three functions are represented is important

in the computational work undertaken in this study. The reasons for

this are discussed, and the different methods which were used are de-

scribed in Section 2.5 and Section 2.6.

SECTION2.2

OPTIMALCONTROL: REDUCED-ORDERMODELLING

Reduced order modelling, based on time-scale separations observed

in vehicle dynamics, is particularly attractive to the analyst in solv-

ing problems for lifting atmospheric flight. Numerical computations are

simplified by the reduction in the system order and as a result the

number of initial conditions which may have to be guessed or iterated

upon is also reduced. Further, an improvement in the conditioning of

the differential equations results from the confinement of the more un-

stable dynamics to boundary-layer corrections, which are relatively short

in time. It has been appreciated since Kaiser's early work (Ref. 22) that

the h and y variables can be changed much more rapidly than the specific

energy, E, which explains the introductionof this new variable. Also

I0



the energy can be thoughtof as a 'fast'variable in comparisonto

the range, at least in cases where the climb is a transientwhich

fairs into a steady-statecruise or dash condition,i.e. when the

time spent in the steady state is much greaterthan that spent on

the climb, as assumedhere. This leads to the reformulatingof the

equationsof motion, followingthe developmentof Ref. 25, with the

inclusionof the interpolationparameters,_ on the left hand sides

of the differentialequationsfor h and y, and _ on the left hand

side of the differentia!equation for E:

2 _ V siny (2-15)

2 • =(L W cosy)/MV€ y - (2-16)

l _ V (nT-D)/W= (2-17)

x = V cosy (2-18)

To solve the problemsof time-optimalcontrolthe variationalHamilton-

ian is formed:

H =_E_ + _h_ + _yY" _xX

and the MaximumPrinciple(Refs.38 and 39) is applied. The resulting

Eulerdifferentialequationsare:

2 _ BH
c _h _h (2-19)

€2 _y _ @Y@H (2-20)

11



l " BH (2-21)€ _E =- _

_ @H (2-22)Bx

?

l_he introductionof three separate time scales in the state system

must conform to the requirementof the Tihonovtheory (Ref.40)that

E2/EI 2the ratio ( ) . 0 as El . O, as shown in Ref. 25. When both E

and El are equal to l the original point-massmodel is recovered.

2.2.1 Rectilinear-NotionModel

The simplestmodel possible is obtainedwhen both El and E2 are

taken 0. By examinationof the differentialequations,the following

consequencesof these assumptionsmay be noted:

= 0 _ = _ = (2-23)

2
E = 0 . E = O- _QT = D (2-24)

These equationsembody the assumptionsthat the altitude,h, the

path angle, y, and the energy, E, can all be varied instantaneouslyin

a control-likefashionsubject to the constraints. In this slow rec-

tilinear-motion model the path-angleis, however, fixed at a value of

zero, and the lift coefficientis chosen at any energy/altitudecom-

binationso that the lift equals the weight. Further,the throttle is

constrainedso that the horizontalforces are balanced. The energy and

12



altitude are chosen to minimize the Hamiltonian. This consistsonly

of the range rate and the associatedmultiplier,which is constant

becausethe Hamiltonianis not an explicitfunction of range in this,

or any other modellingin this study• As a result the min-H operation

leads to the high speed Point on the level flight envelope. In the

languageof singular perturbationtheory this is the zeroth-order'outer

solution',into which the solutionsfrom the other time scalesmust fair

asymptotically. The matchingof differentsolutionsand the composite

generationare discussedin a later sub-section. The next time-scaleis

now examined.

2.2.2 Energy-StateModels

The next level of order reductionis generallyreferredto in the

literatureas energy modelling. In this case l is set to l, and €2

to zero. Again the altitudeand path-angleare assumedto be 'fast'

and 'control-like',but the energy change is analyzedand E assumes

the role of a 'slow'variable. Again the path-angleis fixed at zero,

and the lift coefficientchosen so that the lift equals the weight; but

the only remaining'control-like'variable (apartfrom the throttle,n)

is the altitude: at any energy the altitudemust be picked so as to

minimizethe Hamiltonian,which is now defined as:

• _E_ XEEH =_xx + = _xV + (2-25)

where the differential equation for E is given by:
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= V(nT-D)/W (2-26)

• @H
hE = - _- (2-27)

The altitudewhich minimizes the Hamiltonianis thereforegoing

to be determined,at any energy,by the relativevalues of hE and _x

and their signs: their ratio determinesthe relative importanceof

range rate and energy rate, and their signs determinethe sense of the

optimization.For example, if hE is small enough the altitudepicked

will correspondto the maximum possibleinstantaneousrange rate possible

at that energy, if _x is negative. This is the lowest altitude (and

highestspeed)which is allowed by the terrainlimit, dynamic-pressure

limit or Mach limit,whichever is greatest. On the other hand if the

range multiplieris set to zero the altitude chosenwill maximize the

instantaneousexcess power or energy rate, if hE is negative. This

special case is the so-called 'energy-climb',and is discussedin the

followingsubsection. Note that if either multiplieris positive the

rate of change of the associatedstate will tend to be minimized.

2.2.3 Energy Climbs

Of the possibleenergy-stateresults the energy-climbis the simp-

lest to calculate: as the Hamiltonianonly containsone term, only one

differentialequation needs to be integratedassumingthat hE remains

negative. The initialvalue of the multiplierdoes not in general have

to be determined so long as it is negative the same path will result.

f
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Indeed if time historiesare not requirednone of the differential

equationsneed to be integratedat all: the altitude-energypath

may be found simply by maximizingthe level-flightenergy rate at

any energy. The energy climb for the aircraft studiedis shown in

Fig. 2.1. It is interestingto note that this schedule shows multiple

jumps in altitude,arising from realisticvariationsin the thrust data.

This is somewhatdifferentfrom other exampleswhich have been examined,

for example the F-4, where the altitudediscontinuitiesin the energy-

climb are primarilydue to the transonicdrag-rise (Ref.41).

2.2.4 Enerqy-RanqeClimbs

When the range multiplier,xx, is not assumedto be zero, i.e.,

'energy-rangeclimbs' are examined,the analysis and resultingcomputa-

tionsareslightlymore complexthan the 'energy-climb'discussedabove.

First of all the xE equationmust be integrated,as the relativemagni-

tude of xE to _x at any time or energy is importantin choosingthe

altitude. Secondly,as a result of this, the initialratio of hE to

_x' r° ' must be carefullypicked: differentvalues of r° will result

in differentpaths with differentterminalstates. As the value of r°

is increasedfrom zero the resultingtrajectoriesmove downward in the

flight envelope,with the terminalenergy moving from the _aximum energy,

Emax, towards the dash energy, Ed. At a certainvalue of r° R° a path

resultswhich fairs gracefullyinto the dash-point. This is the range-

optimal 'energy-rangeclimb' which is desired and is shown in comparison

to the energy climb found earlier in Fig. 2.2, with the level flight
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envelopealso shown. Determiningthe correct value of r° is an initial-

value problem,but limitedto only one dimension,and the usual one-

dimensionalsearch techniques,(i.e. golden-section,cubic and parabolic

fits) may be employed. For values of r° which are greaterthan R° the
I

resultingtrajectoriesare range-optimalfor terminalenergieswhich are

lower than Ed, over differenttime spans. These paths are characterized

by a climb which approachesthe dash point, a dash, and finallya terminal

transientwhich takes the energy down to the desired level. This tran-

sient begins with an instantaneousdive to the maximum range rate (speed)
i

at Ed, as allowedby the terrain,dynamic-pressure,or Mach limit,which-

ever is the most severe restrictionat the currentenergy level. In the

case studied, no Mach limit and dynamic-pressurelimits were applied;

rather the thrust data was faired off to limit the level-flightenvelope

from exceedingsuch limits,as explainedin Section2.6. As a result the

terminalmaneuver takes the aircraftdown to the terrain limit, (outside

the flight envelope),where it remains, losing energy. This situation

is unchangeduntil the energy is reachedcorrespondingto the dash speed

at the terrain limit. At this point the engine is switchedoff (_E chang-

es sign) and were speed brakes included in the model they would be applied:

the instantaneousenergy rate is made most negative. This sequence is

shown in Fig. 2.3 for the aircraft being studied. For the case where

Mach and dynamic-pressurelimits are appliedthe equivalentmaneuver is

shown in Fig. 2.4.

This processneeds some explanation: when Ef is less than Ed,
i

the aircraftmust performsome terminaltransientwhich loses energy in
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the most range-optimal way. There are two choices, or ways in which

it can lose energy: at speeds below or speeds above the dash speed.

Obviously the range-optimal strategy is to spend as much time in the

latter region and as little in the former as is possible. This is

done by switching off the engine when the speed drops below the dash

speed, and if possible extending the drag brakes. The problem of the

terminal-maneuver transient is not pursued here; it is of research in-

terest.

2.2.5 Method of Matched Asymptotic Expansions

By the use of singular-perturbation theory, boundary-layer type

corrections can be used to overcome the energy-modelling weakness, i.e.

initial and final jumps in altitude, as in Refs. 25 and 42, and tran-

sonic or internal jumps, as in Ref. 41. While the altitude discontinuit-

ies are eliminated by expansion to the zeroth order, realistic path-angle

values are obtained, in the Ref. 25 approach, only by continuing theex-

pansion to the first order or higher. This is a nontrivial problem in the

case where the altitude transitions occur at the beginning or the end of

a trajectory, and is even more complex in the case of the internal jump.

As a result, even the corrected energy model loses its attraction when

realistic path-angles are required for onboard use as commands. A scheme

for providing more realistic path-angle results in the zeroth order is

explored in Ref. 43.
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2.2.6 Conclusions

To concludethis section,some of the resultsof the reduced-order

modellingare summarizedbelow.

First of all energy-statemodelling,while attractivein its simplici-

ty, is inappropriateand unsuitablefor on-board guidanceuse on its own,

i.e. uncorrected,for the interceptmissioncontemplated. This is because

it generatessignificantinitialand terminal discontinuitiesin altitude

and path-angle,which the aircraft is supposed to follow instantaneously.

Secondly,multiple instantaneousjumps are also possiblealong the optimal

path, and lastlythe path-angleis obtained as zero, in the usual approxi-

mation,which is again a big disadvantageas the actual path-anglescan be

quite large.

Correctionsto the energy-statemodel which overcomethese weaknesses

are possibleand have been demonstratedin the literature(Refs.41,42).

Howeverthis additionalcomplexityis extremelyunwelcomefor on-board

calculationsdue to limitedstorageand, more importantly,executiontime

availableon-board;indeed solutionsare not guaranteeddue to the in-

stabilitiesof the state-Eulersystem which need to be suppressed. In

this context it is questionablewhether this approach is in fact easier

or quickerthan solving the optimalcontrolproblem for the full system.

However,certain ideas from the energy-statemodel are undeniably

attractive. The solutionssuggesta hierarchicalstructureof states in

optimal controlsolutions. This is exhibitedin the followingway;

altitudeand path-angle 'command'values are determinedby the current



.energy, and in this sense the energy is the dominant state. If the

current values h and y do not coincide with these predetermined values,

a rapid transition can be made which brings them to their 'correct'

values_ These ideas form the basis of the guidance scheme which is

"presented in the next section.

SECTION2.3

ON-BOARDGUIDANCE

An alternative to using order reduction, suggested in Ref. 20,

which is simple enough to lend itself to onboard implementation is now

developed, for the case of symmetric flight. The scheme has roots in

the hiearchical structure of optimal-control solutions of the energy

model, in which the specific energy is a relatively 'slow' variable

• and its value determines the control-like 'fast' variables, h and y.

2.3.1 Nominal Path
t

The phenomenon described above suggests that trajectories of the
i

point-mass model funnel rapidly, (rather than instantaneously as in the

' energy model), into the vicinity of a single path, which leads to the

, dash-point. The idea pursued in this Chapter, and Ref. 20, which isbased upon an antecedent memorandum, is to determine this 'skeletal

; ""- path' for the point-mass model, for as wide a range of energies as pos-

I- sible. This is the nominal, or reference trajectory and the altitude
;\

and path-angle histories are recorded as functions of the energy or

energy-to-go, rather than time or time-to-go, as is commonin other

neighboring optimal guidance schemes (Refs. 28-37). The advantage of
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this approach in an on-board context is the approximations to the final

time are not necessary, and implementation of the scheme is greatly

simplified as a result.

.2.3.2 Feedback Law

The next step is to generate a neighboring-optimal feedback

guidance law which will control the aircraft so as to follow a neigh-

bor of the nominal optimal path. There are two basic reasons for doing

this. First of all the reference path is of little use open loop: even

if the aircraft is at any time on the reference path, the control com-

mands which are stored along this trajectory will be insufficient to

keep the aircraft close to it. This is because disturbances and errors

inevitably arise both in the actual flight (i.e. variable winds etc.)

and in representing the control history using a cubic spline (Ref. 44).

Secondly, even if this first problem could be ignored, the reference

path is of little, if any, use when the aircraft has initial conditions

which are far removed from the nominal: for instance if the aircraft is
i

initially loitering at high altitudes and subsonic speeds, on combat

patrol, for example. Linear-feedback coefficients are proposed to

generate the necessary transients to bring the aircraft to the neighbor-

hood of the nominal optimal and stabilize the subsequent path. The

guidance law is a linear feedback control based on the difference be-

tween-the nominal and actual altitude and path-angle values.
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2.3.3 FeedbackCoefficients
\

The feedbackcoefficients,which correspondto minimizingthe

second-variationalapproximationto the performanceindex, as in Refs.

28-37, are found by perturbingthe altitudeand path-angleseparately

from their nominalvalues along the referencetrajectory. The optimal-

controlproblem is re-solvedand the partialderivativeof the control

with respectto the states (at fixed energy) is estimatedby difference

quotient approximation. The partialderivativeswhich are mentioned

here are the variationsin the parametersof an initialvalue problem;

they should not be confusedwith the variationsof the control along the

trajectory. They are defined for an arbitraryvalue of energy = El in

the followingway:

let CL*(t) be the controlwhich takes the aircraftfrom an initialpoint

at low energy, E°, (altitudeand path-anglezero), along the nominal path

up to the dash point on the level flight envelope,while optimizingrange;
L."

._:,_e__ resultant state time histories are given by

:" h*(t), y*(t), and E*(t)

et. the energy of the aircraft reach the value El, while travelling along

the nominal path, at a time tl:
/

El = E.(t I )

_ Then at El the 'correct'altitudeand path-angleare given by h*(tI)

j
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and y*(tl). To find the altitude feedbackcoefficientat this energy

level the procedureis as follows:

find the range-optimalpath which has the same terminalconditions,

and terminaltime as before but use the nominalstate at tI as the

initialconditions,with a perturbation, ah, introducedin the initial

altitude:

y(O) = y*(tl) (2-28)

E(O) = El (2-29)

h(O) = h*(tl) + Ah (2.-30)

The solutionof this problemresults in a new controltime history,

CL .(t). The altitudefeedbackcoefficientis found by the following
new

secant approximation:

_CL(EI) CLnew(O) - CL*(tl) ....
T = ah (2-31)

2.3.4 On-BoardUse

The CL commandsto the autopiiotare taken from the nominal path

with linear correctionsfor the variationof the altitudeand path-

angle from their nominal values. On-boarduse requiresonly the

storageof the states (h and y), control (lift coefficientor load

factor),and the two feedback coefficients,each as functionsof
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energy,or energy-to-go. The feedbackguidance law with the appropriate

functionaldependencies is shown below:

@CL (E)
_CL@_(E) (h-h*(E))+ -- (y-y*(E)) (2-32)= CL*(E)+CL @y

To summarize,the only variablesrequiredto be stored on-board in

the symmetricproblemare:

CL*(E)

h*(E)

y*(E)

BCL (E)
Bh

BCL (E)
@y

SECTIOr_2.4

OPTIMALSOLUTIONSFOR THE POINT-rIASSMODEL

A requirementof the proposed idea is a large number of optimal-

control solutionsto the point-mass-modelledproblem. Optimal control

solutionscan be found in many differentways. They can be found by

the use of direct methods,such as gradientmethods,where the control

history is parameterizedin sectionally-linearor spline approximation

and the terminal conditionsare met by either penalty or projection
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techniques. Alternatively, the problem can be resolved into a two-

point boundary value problem, with split boundary conditions• Half

are known at the initial time and the other half at the final time.

This can be solved by the use of indirect methods such as simple or

multiple shooting (Refs. 22, 23). To solve the problem of time-optimal

control the variational Hamiltonian is formed:

H : XE_ +_h_ + Xyy"+ 'ix_ (2-33)

and the MaximumPrinciple (Refs. 38, 39) is applied•

The resulting Euler differential equations are:

_'E- _)H (2-34)BE

,I =_ @H (2-35)h @h

_, _H
Y - _)y (2-36)

_ _)H
_'x _)x (2-37)

The lift and the throttle setting must be chosen to minimize the

Hamiltonian, which requires that:

_H

_)CL 0 (2-38)

and

a
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n : l (2-39)

(xE < O)

2.4.1 Method of Solution

Euler solutionswere found in the presentwork by the method of

multiple shooting,using the algorithmand computer programof Refs.33,

45-47 kindly suppliedby DFVLR, Oberpfaffenhofen,West Germany. In

this method, the intervalof integrationis broken up into many sub-

intervals. This is preferableto 'simpleshooting',where the initial-

value problemis attempteddirectly,as optimizationproblemsof lift-

ing atmosphericflight are ill-conditioned,the state-Eulersystem being

violentlyunstable. Partitioningthe time intervalhas the effect of

suppressingerror growth. This method was used primarilyfor reasonsof

accuracy. This need arises,for example, in the calculationof the feed-

back gains, found by the differenceof the controlat the beginningof

two optimalsolutions. Typicallyto find the gains to 5 figuresthe

controlmust be known to about 8 figures. The multiple-shootingmethod

has greateraccuracy than the other methodsavailable,and althoughit

is often difficultto generatethe initial referencetrajectory,the

subsequentcalculationof the feedbackgains is relativelyeasy as the

method has good convergencepropertiesin the vicinityof a solution.

Furtherdiscussionon these topics is found in Section 2.8.
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SECTION2.5

INITIAL EXPOSURETO OPTSOL

The first use of the multiple shooting program OPTSOLobtained

from DFVLRwas to solve a very simple optimal control problem. This,

taken from Bryson and Ho (Ref. 48) page 121, is similar to the brachi-

stochrone, and was solved numerically both with and without a con-

s.trained arc, to test the user-supplied software required for the

program.

2.5.1 Aircraft Data Manipulation

The program OPTSOLhad been brought to VPI&SUwith subroutines

already Created to enable the solution of aircraft flight mechanics

problems and, rather than try to start from the beginning, attempts

were made to use the existing computational tools, at least until

familiarity had been gained with the program. In particular, the data

which was used to model the aircraft under study was extensively

modified so that the integration subroutine in OPTSOL,known as DIFSYS,

was able to function. This proved to be a problem, as DIFSYS, as re-

ceived, was extremely sensitive to the degree of smoothness of the right

hand sides of the differential equations. In fact if discontinuities

are encountered in any derivative up to the eighth, the stepsize of

integration shrinks to zero. As all data of the point-mass model had

been represented by cubic splines and spline lattices to facilitate

interpolation, considerable effort was spent on the generation of an

analytical representation which would reproduce both the values and the
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shapesof the data with consistency. This had been done at DFVLR

by using polynomialexpressions,and this method was examinedfor

the aircraftdata on hand and abandoned. While a polynomialof

sufficientlyhigh order will fit any number of consistentdata points

exactly, there is an increasingdistortionof shape with increasing

order of polynomial. In fact even low order polynomialsdid not match

the data at all well. The approachtaken was to use a combinationof

polynomials,exponentialsand arctangentfunctionsto accomplishthis.

In the case of the single valued functions,i.e. CDo(M), CDcL2(M), this
was not too difficult.The arctangentfunctionscan be used as 'soft'

switches,separatingdifferentportionsof the data, which can be re-

presentedby a simple function locally (i.e. by a straight line or a

parabola). However in the case of multivariablefunctionssuch as thrust

and fuel flow this is definitelya nontrivialproblem (howeveronly thrust

was attempted). In the case of thrust,the representationwas achieved

by fitting againstMach number, using coefficientswhich were functions

of altitude. 19 variableswere optimizedusing a conjugategradient

processwhich minimizedthe sum of the square of the errors at the grid

points. The functionsdevelopedfor Thrust, CDoand CDcL2 are shown in
Table 2.1, and the aerodynamicdata are shown graphicallyin Figs. 2.5

and 2.6.

After constructionof the smooth data, the flight envelopewas cal-

_ culatedand drawn (Fig. 2.7). As in the case of some high-performance

jet-fighteraircraftthe envelope turns out not to be performancelimited,

_ i.e. the level flight maximum sustainablespeed is much higher than the
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Mach limit. In this case M = 2.4 is the Mach limit and the high speed

point occurred at roughly M : 3.0. It should be mentioned that aero-

dynamic and thrust data are not actually available for M = 2.4 and the

flight envelope found by extrapolation is essentially a conjecture. The

important thing is that the excess power at level flight is greater than

zero for a range of altitudes along the Mach limit, for which both thrust

and aerodynamic data are reliable. This problem, which in general re'

quires treatment of state-inequalityconstraints, was dealt with in the

following way: the thrust was faired off sharply against Mach Number,

near the Mach limit so that the flight envelope no longer exceeded it.

This was done by multiplying the thrust by a switching arctangent

function which rapidly (but smoothly) brought the thrust to zero while

leaving itunaffected elsewhere. The dynamic-pressure limit was treated

in the same way. The analytical formulation for these two limits are

included in Table 2.1. The flight envelope with the Mach-number limit

is shown in Fig. 2.8; the effect of both of the limits is shown in Fig.

2.9.

2.5.2 Initial Flight-Mechanics Problem

Once the dataset had been finalized, OPTSOLwas used to generate

some optimal trajectories for a simple atmospheric flight problem:

maximize final speed, from a given initial state, with final path angle

zero and final altitude free. This was solved for several different

time intervals, using simple shooting (initially), and also multiple

shooting, to gain familiarity with the use of multiple shooting and te
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investigatethe methods of finding familiesof trajectories,for in-

stance by time stretching. The time-historiesfor a family of four

differenttrajectoriesare shown in Fig. 2.10 - 2.12. These are,

respectively,speed, path-angle,and altitudeplots.

2.5.3 First Trajectoriesto the Dash Point

The next step was to attemptto find paths which went to the high

speed point, over a fixed time intervaland to try to decreasethe in-

itial energy while lengtheningthe overallflight time. This was done

by starting at an altitudeand speed combination,(path-anglezero), just

below the dash point, guessingthe values of the costates. A total in-

tegrationtime of 5 secondswas used, and as can be imagined,the first

guess was far from the targetedfinal conditions;howeverby requiring

OPTSOL to satisfyboundary conditionsby successiveproximityrather than

in one jump, a trajectorywhich reachedthe specifiedaltitude and path

angle combinationwas found. However, it was not possible to get the

final speed to the desiredvalue in the 5 second interval,becausethe

time was not long enough to reach it. To achievethe desired final speed

and to observe the manner in which the system approachesthe equilibrium

point (the possibilityof an oscillatorysolutionnear the high speed point,

analogousto oscillatorycruise solutionswas considereda possibility),

attemptswere made to lengthenthe time of integration,by stretchingthe

sub-intervalsin the multiple-shootingscheme. Initiallyit was found to

be very difficultto extend the trajectoryat all - OPTSOL would not con-

_ verge for even extremelysmall increasesin the final time. Eventually
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the interval was increased to 6 seconds. The final speed also increased

but still did not reach the value at the dash point. It became virtually

impossible to increase the final time any further due to numerical

integration difficulties. For this reason and computational expense,

the approach was reassessed at this point.

2.5.4 Eigenvalue Analysis

The system was linearized about the high speed point to examine the

dynamics of the system in the vicinitY of the equilibrium point. The

analysis revealed that the stability eigenvalues were all placed along

the real axis. At first the absence of compiex roots akin to phugoid

oscillation suggested that the linearization had been incorrect. After

this had been checked and rechecked, the analysis was repeated at a

point removed from the vicinity of the sharp arctangent functions which

had been used to limit the flight envelope, as it was conjectured that

the switching functions may have introduced large gradients affecting

the dynamics of the closed-loop system. The throttle coefficient was

reduced to 0.68, reducing the speed of the dash point by about I00

ft/sec, well away from the arctangent switch region, and the linearized

analysis was repeated. The eigenvalues were found to have both real and

imaginary parts, as expected, showing that the steps taken to limit the

flight envelope had engendered significant effect on the dynamics of the

state-Euler system. The s-plane positions of the two cases are shown in

Fig. 2.13 and 2.14.
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2.5.5 Backwards Integration of Stable Eiqenvectors

It was thought that a useful starting trajectory could be found by

the stable eigenvectors of the linearized system. If the equilibrium

state is disturbed in proportion to a stable eigenvector the disturbance

will die out in the linear case and should fair in towards the equilibrium

point, for some finite time at least, in the nonlinear case, if the

disturbance is small enough. So if such a trajectory is integrated

backwards in time (using the full nonlinear system) a series of points

will be generated which will fair in towards the dash point, at least

for some time. Only one of the three eigenvectors approached the dash

point from the desired direction, i.e. from points lower in altitude and

slower in speed. This was integrated for 22 seconds and used as an

initia! guess for OPTSOL. The path-angle at the initial time was non-

zero and attempts were made to reduce it to zero. Again convergence

troubles were encountered: OPTSOLcould not tolerate large changes in

the initial values and the effort was finally abandoned. Apart from the

cost of computing and poor convergence behavior, the system also displayed

an alarming instability to Small changes: on occasions the speed in the

final seconds dropped from its maximumvalue (about 2300 ft/sec) to l

ft/sec.

2.5.6 Conclusions

It was concluded that the thrust-tailoring approach taken to make

the problem easier had instead probably made it worse. The integration

subroutine DIFSYS is very sensitive to small changes in derivatives of

the right hand sides. By using a multiplicity of sharp arctangent
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functions the computational burden became large, as every time DIFSYS

encountered an arctangent transition the stepsize of integration auto-
i

matically became very small, increasing the computer time required.

Further it was evident the system was overly sensitive to small changes

in initial values. As a result it was decided to use a simpler inte-

gration subroutine and to return to splined data.

SECTION2.6

MODIFICATIONSTO OPTSOL

The first step to modify the operation of the program OPTSOLwas to

change the integration routine. 'The variable step, eighth order Runge-

Kutta package DIFSYS seemed to be a primary source of the numerical

difficulties and computational expense experienced in the early use of

OPTSOL. It was removed in favor of a much simpler fixed step-size

fourth order Runge-Kutta-Gill subroutine.

2.6.1 Splined Aircraft Data

This substitution enabled the use of cubic splines and spline

lattices of Ref. 44 for representation of the aircraft thrust and

aerodynamic data. The problem of the Mach-limit violation was handled by

fairing off the thrust data gently over four-tenths of a Mach Number and

increasing the drag by adding more missiles. The aerodynamic and thrust

data are included in Tables 2.2-2.5. The new flight envelope was calcu-

lated and is shown in Fig. 2.15. The coordinates of the dash point were

found by a Newton iteration applied to the usual necessary conditions.
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2.6.2 Family of Trajectories to the Dash Point

The new data were used to calculate an 'energy-climb' schedule

(Ref. 25); this was used as a guide for guesses of initial altitude,

energy and trajectory time combinations. A thirty-panel division of the

trajectory was employed to find trajectories starting at lower altitudes,

over longer times. This procedure was successful in finding optimal-

range histories starting from an initial energy of 30,000 ft. After

this point it became difficult and expensive to progress any further

down in altitude and energy. It was thought that a smaller stepsize

might be necessary to evaluate partials with sufficient accuracy for the

method to converge. However, this did not improve matters significantly.

But when the program was brought to Langley Research Center the situation

improved. The CDCcomputer has a word-length which is approximately

double that of the IBM 370, so with double precision at Langley about 28 •

decimal digits were obtainable compared to 14 or 15 digits at VPI. This

had a significant effect on the program's operation. Much smaller step-

sizes were used to evaluate the Jacobian without a penalty in round-off

error, and it is conjectured that the resulting improvement in the

accuracy of the Jacobian helped the convergence of OPTSOL. The tra-

jectory extension continued until zero altitude was reached over a

trajectory of 282 seconds.

SECTION2.7

OPTIMAL-REFERENCE-PATHCALCULATIONS

The first objective is to generate a reference optimal path using

point-mass-model dynamics, over the widest possible energy range. In
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the climb-dashproblem,the highestenergy of interestcorresponds

to that of the high-speedpoint on the aircraftenvelope,the dash

'outer'solution. The lowestenergy correspondsto the trajectorywhich

just kissesthe terrainlimit, i.e. below this energy,optimal solutions

which start at zero altitudewould dive below the terrainlimit if it

were absent. This lower energy is found by examiningthe initialload

factor of a family starting from level flight at the terrain limit

altitude: when the initialload factor is unity the lower energy is

determined. This is shown in Fig. 2.16, where the initialload factor

is plotted for severaldifferentinitialenergies.

2.7.1 Final Load Factor

Once the energy had been found for which the aircraftpulled off the

ground with an initialload factor of l, the effect of the flight time was

investigated. To satisfythe final conditionsin a finite time requires

that the aircraftperform some maneuveringnear the terminalenergy: the

longer the time allowed to approachthe equilibriumpoint, the more gradual

the approach should be. The effect of flight time on the final load

factor was studied (for the same initialand final conditions)and results

are shown in Fig. 2.17. This clearlydemonstrateshow the optimal path

tends to fair inasymptoticallyas the flight time is increased. The

load factor dropped to l.O01 after the flight time had been increasedto

360 seconds. This time was chosen for the nominalpath adopted in

guidance-schemedevelopment,and the altitudeand path-angle(state

variables)wa well as the lift-coefficient(controlvariable)have

been splinedas a functionof the energy. The load factor is
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shown in Fig. 2.18, drawn againstenergy, showingthe grid points used

in the spline. Figs. 2.19-2.22show the energy historiesfor path-

angle, altitude,load factor and lift coefficientrespectivelyfor tmax

= 360 secs. The other paths from the same initialenergy, but over

longer times, showed identicalstate and controlenergy historiesover

almost all the energy range. However,at the terminalenergies the

effect of differentflight times is most evident. Comparisonsof the

trajectorieswhich result for differentflight times are shown in Figs.

2.23-2.26for path-angle,altitude,load factor and lift coefficient

respectively. These variablesare plottedversus energy for the last

2000 ft of energy,for tmax = 300 secondsand tmax = 360 seconds. The

dramatic effect that the flight time has on the final state and control

behavior is obviousfrom these pictures.

2.7.2 One Panel Integration

After each convergedsolutionwas obtaineda trajectorywas performed

for the entire time, from the initialconditions. At higher energies

and over shortertimes this would ordinarilygeneratefinal states which

were close to those specifiedin OPTSOL, but owing to the error propagation

of the mismatchedpaths at each grid point, there is a differencebetween

a one-panelintegrationand a 30-panel integration. However,at energies

with zero initialaltitudethe error propagationwas such the final

conditionswere not nearlymet. After about 150 to 200 secondsthe

instabilitiesin the state_ulersystemwould produceextremeresults.

This raised the questionas to whether the solutiongeneratedby OPTSOL

is optimal or even near optimal. To this end the number of panels was
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reduced first to I0, then to 6. Attempts to drive the number smaller

than this were not successfulas it appeared that the computerwas

'runningout of digits',despitethe fact that 28 were being used.

However,the differencebetweenthe solutionfor 6 panels and for 30

panels lies beyond the 9th digit and so it was assumed that no benefit

would be gained by trying to reduce the number of panels.

2.7.3 Energy-Model/Point-Mass-ModelComparisons

Having establishedthe nominaloptimalpath which takes the aircraft

up to the dash point, it is of interestto stop and considerthe two

differentmodels which have been used to study the problem, in particular

it is of interestto comparethe two differentpaths which climb up to

the high-speedpoint. These are shown in the h-V plane in Fig. 2.27,

surroundedby the level-flightenvelope. The energy-range-climbmodel

is indeed close to the point-massmodel particularlyat higher energies.

SECTION2.8

FEEDBACKCOEFFICIENTS- CALCULATIONS

This sectiondescribesthe numericalwork done to evaluateand

representthe feedbackcoefficientsused in the guidancelaw for the

case of synlnetricflight. In this case the coefficientsare the partials

of the lift coefficientwith respectto the altitudeand path-angle,at

a fixed energy.
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2.8.1 Method of Evaluation

The calculation of the variation in the control due to errors in

the altitude and path-angle is treated as an initial-value problem, and

has been extensively discussed in Section 2.3. To improve the accuracy

of the feedback coefficients, each one was evaluated twice, by introduc-

ing positive and negative perturbations, and taking the average of the

two difference-quotient values. This method also allowed the determin-

ation of the optimal size of disturbance (in terms of the resulting

accuracy) by varying the size of the disturbance, examining the degree

of agreement between the two values until the 'best' stepsize has been

found for both altitude and path-angle. While itis true that the optimal

stepsize will in general vary along the reference path, it was found

that this change was negligible and one value was effective in evaluating

the entire range for either coefficient. As the stepsize is reduced the

errors due to nonlinearities shrink, but those due to a finite word-

length grow: hence a compromise defines the optimal disturbance. It

has been noted that a multiple shooting method such as OPTSOLis well

suited to these kinds of calculations: although it was an arduous task

to establish the nominal path, once this had been achieved, the neighboring

solutions were found rapidly (within 3 or 4 iterations) and with high

accuracy. This last point is important, as the use Of numerical differ-

entiation of the initial control to find the feedback gains required

high precision control information. Typically it was found that 8-9

decimal digits of information were required for 4-6 figure accuracy in

the gains.
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2.8.2 Pilot Scheme

Feedback coefficients were initially found over a small range of

energies, to evaluate the usefulness of the scheme before committing the

computational resources needed for the full-scale operation. The last

fifth of the energy range was chosen for this purpose as the integration

times are the shortest and this minimizes the CPUtime required to find

optimal control solutions. The energies and corresponding times were

taken from the reference trajectory (of 360 seconds) in the following

manner: the total energy change was divided into twenty. The reference

path was then integrated again and whenever the energy at the end of an

integration step exceeded an integer number of divisions of the total

energy change, the time and energy were recorded. The disturbance sizes

were varied so as to maximize the agreement in between the two values

obtained for each coefficient. The optimal perturbation in altitude was

found to be 0.05 feet; in path-angle it was found to be 0.0000001 radians.

Agreement between the values of both of the coefficients was found to

vary in between 4 and 6 figures. In addition to the energy levels

already chosen for feedback coefficient evaluation, it was necessary to

find values close to the final energy as well. This is because spline

representations are very unreliable when used to extrapolate data. The

energy at the beginning of the last panel in the multiple,shooting

method, i.e. at 348 seconds, was chosen as the upper limit for this

purpose. The gains at this energy, which is just 0. II feet below the

maximumvalue, turn out to be an order of magnitude larger than the

gains at lower energies. This sensitivity of neighboring-optimal-

guidance schemes close to the terminal state has been noted in the
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literature (Refs. 28-37). It is worth commenting, however, that the

apparent unboundedness in the gains near the final state could have been

a result of the method by which they were calculated; it is quite

possible that a finite integration time, which is shorter as the terminal

state is approached, was responsible. In other words if a longer time

of integration had been allowed for the paths which were close to the final

state, a different behavior might have been observed. However, this

effect is highly local, and due to limitations of time and money this

topic was not pursued. Any actual implementation of the scheme would,

of course, have to take this into account, possibly by setting an upper

limit on the magnitudes of the gains, to avoid control saturation with

Small errors. To examine the transition in the feedback coefficients

near the terminal state, the analysis was repeated for three more

energies close to the final time, at 336, 324 and 300 seconds. This is

an inexpensive set of calculations as the integration times are extremely

short. Also the coefficients were evaluated at the energy corresponding

to the trajectory time of 188.7 seconds, as it was felt that they were

needed for accurate spline representation.

The next problem was to spline the coefficients as functions of the

energy-to-go. Difficulties were encountered at first when the splining

was attempted. Cubic splines are not suited in general to represent

functions where large variations in the gradient exist. In this case

the gradient changes by six orders of magnitude in the vicinity of the

end-point, resulting in large extraneous oscillaltions appearing through-

out the spline representation, which render the interpolation useless.

One way (not very satisfactory) is to ignore the spurious points which
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are causing the trouble. This was done in this case, and the plots of

the coefficients are shown Figs. 2.28-2.29.

To overcome these difficulties the splines-under-tension of Ref. 49

were used. These are similar in character to the cubic splines of Ref.

44 which had been used so far; the additional feature of the splines-

under-tension package is the ability to minimize spurious wiggles near

regions of rapidly changing gradient by the use of a tension factor, _.

By increasing o the anomalies can be reduced but not eliminated, at

least in thevicinity of the end point. The problem is that as the

tension factor is increased the oscillations near the end point die down

but the rest of the representation becomes essentially polygonal, i.e.

linear interpolation between the data points.

2.8.3 Loqarithmic Splining

It became apparent that the normal or ordinarymethod of splining

was inadequate and a different approach was needed to continue. Es-

sentially this is a boundary-layer type problem: there is a region

where the coefficients vary rapidly. It seemed to be appropriate to

separate the two regions and, using different methods, spline each one

separately. The only requirement would be that the two representations

fair into each other smoothly. One possibility is to use the normal

splines in the 'outer' region, and spline the terminal coefficients

in terms of the logarithm of the energy-to-go, matching the slopes at °

the junction between the two regions. (Another possibility is to use

the inverse of energy-to-go in the terminal region, but this was not

used for reasons as the large variations in the gradients, which are the

roots of this problem, still exist.) The logarithmic method was used to
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spline the coefficients for the range of energies considered in this

pilot section. The results are shown in Figs. 2.30-2.31. These show

the gains using I0 grid points for interpolation. These show a dramatic

improvement over the previous attempts to spline the data: these

earlier efforts had been so bad that they would only be visible on the

same graphs as a series of vertical lines passing through the grid

points. It was considered likely that with a few additional points the

small remaining anomalies would be eliminated. An additional 16 points

were evaluated in the vicinity of these outstanding 'wiggles' and

finally a usable representation was generated, shown in Figs. 2.32-2.33,

as functions of energy. They are shown as functions of the logarithm of

energy-to-go in Figs. 2.34-2.35.

When the decision was made to carry on and evaluate the coefficients

over the rest of the energy range, the same method was used to spline

the data: the logarithm of the energy-to-go was used, and there was no

need to go to a boundary layer type of approximation after all. The

coefficients as they were represented over the entire energy range are

shown as functions of the energy in Figs. 2.36-2.37. The corresponding

plots versus the logarithm of energy-to-go are shown in Figs. 2.38-2.39.
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SECTION2.9

SIMULATIONANDTESTING

Following the satisfactory splining of the nominal states, controls

and feedback coefficients as functions of the energy-to-go, the guidance

scheme was tested by running a simulation of the point-mass-model, using

the feedback law, and comparing the resulting trajectory with an Euler

solution which started from the same initial conditions. Before the

entire range of feedback coefficients had been worked out a pilot scheme

tested out the idea on a small range of energy near the dash-point.

This test was performed with an initial disturbance of I000 ft; the

trajectory which resulted from the guidance law is compared with the

Euler solution from the same initial conditions and the nominal path in

Fig. 2.40 where the altitude is plotted as a function of energy. The

guidance law is so close to the optimal path from the same starting

point that it is almost impossible to discern the difference between

them on this Figure. The difference in altitude between the two is

shown as a function of time in Fig. 2.41 it can be seen that the dif-

ference is always less than II ft. With zero disturbance the auto-

pilot was able to follow the nominal path more than satisfactorily, over

the entire range of energies, despite the inevitable errors which arise

in the spline representations. Tests were performed with the initial

altitude disturbed from that of the nominal path at different energies

by I000, 5000, I0000 and 15000 feet above and by 5000, I0000 feet below

the nominal path. The resulting trajectories are shown in Figs. 2.42-2.46.

These show that the feedback law follows the optimal solution

closely, even when the initial disturbance is far
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outside of the range of linearity of the feedback gains. The cost was

calculated for the situation with an initial altitude of 15000 ft above

the nominal value' at the point where the two trajectories faired into

the dash point. The difference between the ranges was less than 600 ft,

an extremely small number considering that the dash speed is 2400 ft/sec.

SECTION2.10

EXTENSIONTO 3-D FLIGHT

This section describes the work done to extend the analysis to

three dimensional flight, and suggests what direction future efforts

might take.

2.10.1 Cross-Ranqe Considerations

The problem of extending the analysis to 3-D flight is now considered.

The state system is augmented to include y, the cross range, and ×, the

heading angle. The addition ofthecorresponding multipliers to the

full state-Euler system raises the order of the problem to twelve. For

the intercept problem the final value of y must be zero; the value of

the final heading, relative to the initial heading, must either be

calculated on-board, or be supplied by the GCI. This will in general

vary, for a maneuvering target, and the value stored on-board must be

periodically or continuously updated.

The boundary condition on y leads to a dependence of the optimal

solution on the cross range: for the same heading-to-go and energy-to-

go there will exist many different possible values of y. As a result,

if this formulation is used, cross range-to-go is an additional running
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variable:this increasesthe order of the nominalpaths required,which

means a large increase in thecomputations on the ground,as well as an

increase in the storagerequirementson-board.

To get around this situationit is proposedto avoid using an

additionalrunningvariableby lettingthe final value of y be free:

this can be accountedfor in the computationof the final heading

needed for intercept,as specifiedby the on-board flight computeror

the GCI. The interceptpaths which result from the two different

methods are compared in Figs. 2.47-2.48,for a target which is initially

far away from the interceptor.

2.10.2 ComputationalConsiderations

The first approach consideredto generatea family of paths to the

dash point was to use the symmetricflight referencepath as a starting

point for the augmentedsystem,and introducea small heading-to-goat

the initialtime. The argument for doing this is that for very small

headings the state-Eulersystem should not be changedvery much: the

paths are close to each other. However,this method is only useful for

a small number of combinationsof heading-to-goand energy-to-go. This

is becausethe turning rate at the energy at which the aircraft lifts

off the ground is so high that all the heading-to-godisappearsin a

short time, and over a very small energy range. In generala method

must be found which generatesthe part of the family of referencepaths

which combinesmoderate and large headings-to-goand moderate to small

energies-to-go. The difficultylies in knowingwhat initialconditions

to pick for the altitudeand the path-angle: when the aircraft is
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lifting off the ground, these variables are specified, but in the

general case, starting from an arbitrary energy-to-go and heading-to-go

combination, the selection is a problem. Letting them be free is not

acceptable as it can lead to an initial lift coefficient of zero (i.e.

in the symmetric case): the optimization algorithm takes advantage of

the freedom to choose the initial conditions in a way which maximizes

the short term benefit. This does not fit in with the concept of a

nominal reference path, where the altitude and path-angle are the same

at the same combination of energy and heading-to-go.

The solution that is recommended is to use the altitude that comes

out of the energy-turn model, as in Ref. 25. Here the heading is

assumed to be a 'slow' variable, and has the same status as energy.

However, instead of having to choose one variable, (such as the ratio of

the initial energy multiplier to the range multiplier, as in Section

2.2), the initial heading multiplier must also be iterated upon. This

is done using a Davidon-Fletcher-Powell algorithm, to find the path

which fairs into the dash point with zero heading. An example of such a

path over a small range of energy and heading-to-go is shown in Fig.

2.49, where the heading is shown against energy, and in Fig. 2.50, where

the heading vs time plot for the same initial conditions is shown.

2.10.3 Selection of the Initial Path-Anqle

The energy-state model produces altitude predictions which are

fairly accurate as a function of the current energy, (away from altitude

jumps), as can be seen from Fig. 2.27 where the Euler solution to the

climb-dash is compared to the energy-range solution. However, the same
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can not be said for the path-angle,which is predictedto be zero along

the path. As a result a modificationis considered,(Ref. 43), which

produces realisticvalues along the path. The differencelies in the

selectionof the fast and slow variables: if altitude is chosen,zero

path-angleresults, if velocity is chosen,a value of the path-angle

resultswhich is too high. A new fast variable is examined in Ref. 43

which picks path-anglevalues in betweenthese two values,and which may

be used as initialconditionsfor the problemat hand.

SECTION2.11

IMPLEMENTATIONAND CONCLUSIONS

2.11.1 Implementati@n

Before the scheme may be used on a real aircraft there are some

important simplifications and restrictions which have been applied in

the interest of reducing the initial workload which must be accounted

for.

First, the weight variation of the aircraft must be included in the

modelling as a substantial percentage of the total weight may be used up

during a mission. This is perhaps the easiest or at least the most

straight-forward problem: the required action is to increase the order

of the system, i.e. the mass is added as another variable and the resulting

boundary conditions are simply that the initial mass is known, initial

mass multiplier is unknown, and the final mass is unknown resulting in

the mass multiplier being zero at the final time.

Fuel optimization is a problem which will no doubt be of interest,

with different combinations of fuel and range being optimized. Problems
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can occur here with a nonconvexhodograph,i.e. leadingto the possibility

of chatteringcontrols,in this case the throttle. Other problemsof

the real world which have not been addressedare variationsin atmospheric

conditions,i.e. winds aloft and non-standardtemperaturedistribution

againstaltitude. Possibly these could be dealt with by analysingthe

effect of small perturbations,findingan approximationto the first

order changes in the variableswhich are stored on-boardand using

simple linear corrections.Certainlythisis the simplestway of tack-

ling such difficultiesand it would be interestingto examine how

effectivethis approachwould be.

Another problemof interestis that of variableconfiguration,i.e.

the effect on the guidance scheme of changesin the aircraft's

characteristicsdue to battle damage,releasingexternal stores,etc.

The biggestproblem that must be looked at is the extensionto 3-D,

discussedin the last section.

2.11.2 Conclusions

The numericalresultsbear out the followingconclusions: first,

that all trajectorieswhich fair into the high-speedpoint consist of a

rapid transitiononto a referenceor skeletalpath if they do not

originateon it. Secondly,the linear-feedbackscheme proposed is able

to controlthe aircraft so that it closelyfollowsthe appropriate

neighbor of the nominal path for large perturbationsof initialcondi-

tions.

2.11.3 Future Work

A 3-D extensionof the computationalscheme is of interestin which
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there are two dominant states,i.e. heading-to-goin additionto energy-

to-go. As a result,families of optimalpaths which fair into the dash-

point will be needed,and the feedbackcoefficientswill be functionsof

two variables(representedvia a spline lattice) insteadof one.
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Table2.1 Representationof AerodynamicData

CD = 0.0242 + arctan (50(M-I.0)(I.0+0.35exp (-4.5(M-l.8)2)(O.O12/x)
o

+ 0.08 exp (-55(M-I.I)2) +0.0096 exp (-20(M-I.35)2)

+ 0.003 exp (-20(M-I.6)2)

CDcL2 (0.5+0.2026arctan (50(M-I.23))arctan (50(2.25-M)(O.39M-O.475)

+ 0.075 + 0.05 exp (-150(M-0.985) 2) + O.4(O.5+arctan (50(M-2.25))

CLmax = 0.82 + (0.72/_)arctan (50(M-O.9-M)+

(i.23-0.6M)(0.5+0.2026arctan (50(M-0.9))arctan (50(2.05-M)

Thrust(M,h)=

(0.5+(I/_)arctan(40(M-XM2))(H2-HI)+ HI +

(0.5+(2/x2) arctan(40(M-XMI))arctan(40(XM2-M))(H2-HI/XM2-XMI)(M-XMI)

XMI,XM2,HI,H2are functionsof altitude:

XMI = (3.84 (exp (0.165(h+1.74))))- 4.82)

XM2 = 0.0156h2 + 2.83h + l.l

HI = (fl.gl+ f2.292)f3 (41000)

H2 = (fll.gl+f22.g2)(O.5+(I/x)arctan (40(0.91-h)))40405

fl = -2.43h2 - 1.59h + 0.974

f2 = 2.38h2 - 3.24h + 1.24

gl : (0.5 + (I/n) arctan (40(0.3-h))

g2 = (0.5+ (I/7) arctan (40(h-0.3))

fll = l 35h2 - 1.53h + 1.56

f22 = 3.25h2 - 6.25h + 2.98

f3 = (0.5+ (I/x) arctan (40(0.75-M))

- h = altitude/lO5
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Mach Limit Fairing

The thrust is multipliedby the factor given by:

f = (0.5 + (I/n) arctan (150(2.4-M)

Dynamic PressureLimit Fairing

The thrust is multipliedby the factor given by:

f = (0.5+ (I/n) arctan (150(M*-M)

M = _/(4000/rho)/ss

rho = density

ss = speed of sound
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Table 2 2 Data• CDO

Ma=hNumbe= CDo

0.00 0.01950

0.50 0.01950

0.80 0.01950

0.88 0.02097

0.90 0.02134

1.00 0.03533

I.i0 0.04095

1.20 0.04656

1.30 0.04570

1.40 0.04950

1.50 0.04934

1.60 0.04918

1.70 0.04744

1.80 0.04570

1.90 0.04450

2.00 -0.04330

2.10 0.04166

2.20 0.04001

2.30 0.03801

2.50 0.03451
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Table 2.3 CDcL 2 Data

Mach l_hn_er CDCL 2

,

0.00 0.07500

0.40 0.07500

0.60 0.07500

0.77 0.07500

0.80 0.07500

0.90 0.I0000

1.00 0.12500

I.I0 0.07500

1.20 0.I0000

1.40 0.15000

1.60 0.22500

1.80 0.30000

2.00 0.38750

2.15 0.45000

2.20 0.47500

2.25 0.47500

2.40 0.47500
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Table 2.4 CLmax Data

MachNumber CLmax

0.O0 1.180

0.40 1.180

0.60 1.180

0.80 1.160

I.O0 I.080

1.20 O.930

•1.40 0.810

1.60 0.700

1.80 0.630

2.O0 0.570

2.20 O.500

' 2.40 O. 460

2.50 0.460

i
i

!

4
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Hach Number
Alt _-]

(kft) I0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 3.0 _"

" 0 138580 41110 44270 49630 54390 62170 65600 65600 65600 65600 65600 65600 59040 29520 0 0 i

" 10 33070 33070 33070 37160 42370 49950 54230 59930 5993059930 59930 59930 53940 29520 0 rJ I

20 23240 23240 23240 26830 30900 37630 43520 40070 54770 54770 54770 54770 49290 24645 0

30 15540 15540 15540 17950"21210 26450 32120 38070 42600 48010 52430 55810 5O23O 25115 0

40 12000 12000 12000 12000 14400 18400 22400 26800 30200 34000 37200 40000 36000 18000 0

50 6648 6648 6648 6648 7978 10230 12800 15110 17220 20150 21960 24020 22580 11290 0

60 5660 5660 5660 5660 5660 5660 6540 8200 980011200 12760 14OOO 13320 6660 0

70 4400 4400 4400 4400 4400 4400 4400 4400 4400 5400 6400 7200 6930 3465 0

80 2200 2200 2200 2200 2200 2200 2200 2200 2200 2700 3200 3600 3460 1730 0 '-"
Cr'

100 0 0 0 0 0 0 0 O. 0 0 0 0 0 0 0
i



........... ,.° . ....... • ° .

I_ .
go

°g_ °.

_ _.l
o _

'1:1

0.00 I 0 0.130



( ( (

8
•
tli-r-----.-----.------..---.-----r---..,

N
•
N

8. •.. mM O~::s
(D ....
t1 ME
~

I -8:ug 1-.
IQ lJ..~

CJ1 (D -m I
W0

I-'

~8
....
EJ. .... . .. .
rt 1-(0. .
0 -J-
~ ([
It

tJ
III 8f/I
:J" • I
td ~o.oo 100.00 130.00 160.00 1:)0.00 . 220.00 2 0.00
0 SPEED (FPS).... KEIO
~
rt

IJ r l



, I.

'( (' (

8
•

'"n lb-r-.......---r------.----.-----'.,------r---.... '
OQ

N.
VI'

..

,"
..

'" \. ,
: \
I \

•
Vd: '

I ! I!-;::t::·===ir-=:.::.:==-====~I
125.00 150.00 175.00 200.00 225.00

SPEED (FPS)' ~lO'

oo
•

°100.00

o
-0
1-'
lL.~- -

~o rJ
1-0-. .
I-~-
--1.
([ .....

.
to)
ct

U1 a
'-J ....

~
III.....

f?
CD
tf

~
,to)

tf

~
fA....
ct
~
rt



( ( (

'TJ
1-"

()Q

· 0
0

N •· : ~
~ lO

M

0
0

• MCI'I 00· O~..
~.. .....
~ ~:£....

Mt'
-8II'.-. 1-.

!..
01 ~ lJ..~ -t100

II' '-"

t' W
IA 0....
CD ::>0 H \t' 1-0rt .-. .

I-{O- \-1-
a:

\
8 q Vd

,.
°100.00 150.00 175.00 200.00 225.00

SPEED CFPS) ;:e 10'



C) ' l I '

_)0""

8
6o'.oo ol.so 11.2o _1.8o z.4o

MACH NO.

" " Fig 2 6 "._.,, ....... CDcL2'(M) Smooo_.h Data

to
0

0 I I I

L%I

[_)

0
- 0

• l I I
c:b.O0 O.60 1•20 1•80 2.40

HACH NO.

•,..__ Fig.2.5.......CDo(M)SmoothData

59



I 'I I

-
0 30.O0 180.O0 230.O0 280.O0 330.O0

SPEED •IO'

Fig. 2.7........Unlimited Flight Envelope, Smooth Data

'_- FL I OHT ENVELOPE
8
[_ I i I ..

I---D'NOLD'-_

30.O0 180.O0 230.O0 _810.O0 330.O0SPEED • 1 "

F'ig.2.8 .......Envelope with Math Limit, Smooth Data

6O



( ( (

FLIOHT ENVELOPE

-' I' I I

oo
_-

(Z}
wo.
01/1_

_N -
I-- "

! !_O._o.oo,_0.00_o.oo _8o.oo_o.oo
SPEED r.'-10'

Fig. 2.9 ........ EnveIope with Q and Mach Limit8



Fig. 2.10 ......Speed v8 Time

6Z



Pig. 2. ii ........_,r-_-An_:,vs T±,-e

63



I I ! | I I

B

o._ _ j._ ,l._,_.=,_.._I,_.=
TIMEISECI

Fig. 2.12 ........Ai=i_d,v- zi=.

64



O,
!

- .20 -0.60 0.00 0.60 I 20
REAL

Fig. 2.13........Eigenvalues at :be Dash Point

O"

0
L_O

O" 0 •

-e

O, • 0
I

O.
.!
- .20 -0.60 0.00 0.60 I 20

REAL

Fig. 2.14 .......Eigenvalues at Reduced Throttle

65

":2



( ( (

gi_ .

--_. I I I I i

• 8.
• _..

_ --,8

0

_,_ _-- _

u

" 8.rt

1°izo:oo14o.oo16o.oo' I
_eo.oo _)qo.oo.2zo.oo z4o.ooSPEED (FPS ) _ l



LO

o I

_' O i I !

0

°an
,mmm

0

Z

8
"- I I I_ i
-2bo.oo3oo.oo _.o.oo 340.00 _o.oo

•TIME
Fig. 2.17 ........Final Load Factor

i

i I I

0

w mid
m

/

m m

Z e

I

,Io.oo, o.ooI
ENEROY • • I_o. oo 18o.oo

t

Fig. 2.16 ........Initial Load Factor

67



( ( (

61..;

"T.l 8..... ,.;
Ql:l

•
N
•......
00

•

t"""
0
~
0..

~
'TJ

00 ~

n z
rt
0
'"!

~
~ -til

tTl
~ iiiCD
'"! 0

Ql:l

'<

I!
'ti.oo &t.m .00 120

I J



bO

r _--. •

_I I I I I
• o.oo ao.oo so.oo so..oo lzo.oo

P'NEROY • I 0°
? ,_, Fig. 2.19 ... .....Path-Anglevs Energy

I I I

,,,8.
,.- __...

- ._.1

Fig. 2.20 ........ Altitude vs Energy

69



or) I I I

°a m

.oo 3o.oo so.oo
ENEROY • i_.oo t2o.oo

Fig. 2.21 .......Load Factorvs Energy

I I I

N

Cbl.o0 30.00 60.00
ENEROY • I_.oo I_o.oo

Fig. 2.22.......Lift Coefficientvs Energy _

7O



:i ,
_._ Fig. 2.23 .Path-Angle vs Energy 300,360 seconds

"_-_ Fig. 2.24.......Altitudevs Energy 300,350 seconds

71



O
LD

i I I

• I i11_oo Isoo.ooiIsso.oo .oo 11.7so.oo__eoo.oo
ENERGY • 1o'

Fig. 2.25 .......Load Factor vs Energy 300,360 seconds

-- j I I I

b
_'0

0 " _.

I1600.00 !1650.00 II 00.00 II 50.00 I1800.00
ENERGY _ 10'

,4.

Fig. 2.25.......Lift Coefficient vs Energy 300,360 seconds

72



( (" (

8

--I I _ I I I• _..

o_'-
I

M

_ ---8

o _
_o

•NI B

"ore "_O.Do Ioo.DO SPEED!so.oo(FPS160.)O0 3:11_)90.O0 220 .O0 250.O0

fl-
I-"-'
0



( ( (

oo_
• I I I I I

L'J

• _.
• _7

_ DATA

g
•...4 _ ,

O

- el,.:
t,I

•"-, I I I ! I
'soo.oo._o.oo ,ooo.oo,oso.oo_oo.oo ]ISO.OO,200.00ENERGY _ 1



-)
.......... r ....................... '0_. .

• O !

:. o -
OATA

, _.
cn _

,_

!11
I

M

• I° ! I°_Uo.oo9_o.oo, oo.oo,Io_o.ooo.oo_,so.oo_oo.oo
ENEROY _ l



DATA

_ _ -

_ -r_

g, _, -
o

i

" I
", I, I ,, I ! I, '
1900.O0 950. O0 1000.O0 !050.1]0 ILO0. O0 I 150.OO 200. O0

ENEROY _"I0_



.1

( ( ('

'T1 (I)
f-l. ~

(1Q •
• 0
N

,
•
VI
.....

he

ORTR

9 0.00 1000.00 1050.00 I ~OO.OO 1150.00 1200.00
ENERGY ~10

ro
In

•
O'-I-----I-----I-----I-----t----+----1.--I
ISOO.OO

w
•o
I

m
~·o
I

o
o
--I
UO
O~

o
I

·."t:l
III
rt
::J"

I

III
::s

(1Q

.....
(l)

Q
"1\1....
~

<:
Ul



_ ( (

I_ •

• I I I I I

t'J

• _
: Ol" A

_ DATA
j-o

;J.

g
•-4 _
_:_ .

i.J.

4

" d-"
M

" 9_ I I I i
'sbo.ooo.oo,ooo.ooloso.oo_oo.oo_'_5o.oo!oo.ooENEROY ):"1

j ;, ( J



( (

_.

!
• • |

I

. DATA
I

i

• ' I" I ' - I-- "

"i_ 8
_.J

o
M

IS_0.00 SSO.O0ENEROYI°°°'°°loso.oo3:...I_12oo.oo115o.oo12oo.oo



' I I I I I

: b°,- - ,,
_, _ DATA

IJ.

_,.

a
_ -r=

d ,i

LOO(E TO 001

s J_ t. _J



, ~ - ---.

( (

0...,
'T.I ·1-" 0

OQ I
•
N
•
VI 8VI

... AI

DATA
·ttl

~PI

£t- •
I ...

ex> ~- I
--' 0IQ.... 0CD ...J

Q UO
Pl- ot\!....
~ N

< I
1/1

tot
0
~ ~-lwj •- N

1- 1•80 0.37 2.53 4.70 6.87 9.03 11.20
LOG(E TO GO)



( -.......... ......._.... (' (

*7 I 61o.oo I I°'d.oo z/.oo 4o.oo
ENEROY _ I_c_.oo noo.oo 2o.oo



( ( (

0

• I I I I __,---_,_ --
t_

L
.,,,i

,: !
• DATA

_ _, °

@
Q

m .

M

_,,._ 2'o.0o_g._ 6'0.0o_.oo ,_.oo ,o.ooENERGY _ 1



D" I ! ! ! ! " "

' • A"

.... .7-20"-

•: DATA

l-re.

/
o_ o_/

?.T ! I /
- 1.60 0.60 2.80 . 9.40 ! 1•GO

LOG(E TO GO)



( ( (

0
'Tl "lit
f-!. ·()Q 0
• I

N.
VI
1.0 0

0
•.... A-
I

DRTA.
ttf
I»s: @

. I

(Xl ~ -CJ1 IQ I
.... 0
II a
(;l -J
PI UO.... at\!::s .

< N
01 I

tot
0
IQ- tiltzJ- ·N

I 0.60 2.80 6.00 7.20 9.40 11.60-1.60
LOGlE TO GO)



( ( (

"I1 8.....
(]Q •
• ~
N ~•
.j:::o FEEDBRCK
0

0 x0·8
- q- ~· Oro)" - NOM INRL....

rt -8...
~ •g.

m00 ct
O'l <

lA
('f)

lJJ W::s DOct
::>~t1

~ !:~..
.... 1-00-I0 a:0
0 8.... •rt

L.oo~ .1
Ib50.00 I ~oo.oo .0 950.00 1000.00 1150.00 1200.00<ct ENERGY ~10

"



co.......

(

"T1 81-"
OQ •• -
N
0
.~

~

.'...
)ll
~

rt

8....
2 •
D- Ill)
It •
lIJ ([
t1 I-t1 -I0
t1 wo
< o~
UI m
ti •....
a
CD

8
•--'0.00 30.00

(

so.oo 90.00
TIME

120.00 I 0.00 '180.00

(



( ( (

8
'"I1 ·.... 0

OQ ~
• co FEEDBACK
N X•.,.

8N EULER SOL· •

o~
~

NOMINAL
--'

· ME +
)II.... 8rt.... •g ~
0- N
CD

co < Wco
UI 00
PJ =»0
::s 1-.
CD _0
t1 I-Ul
\Q
t< ..J-.. ([
VI
0 0
0 0
0 ·
t1l
rt

45.00 60.00 7 .00 sq. 00 105.00 120.00
~ ENERGY *10
~
CD

"



( ( (

8
•

0
'"I'1 ~ FEEDBACK1-"

QQ

• X
N 8 EULER SOL•.;::. .,
~

N ~ ~· ON NOf-l I"IAL....
ME ~

·)0...
rt....

co
g

\0 P-
et

<
(/I

tJJ
::f
CD
t1

~

t-' 8'
0 •
0 80
0

~.OO 45.00 60.00 7 .00 ,~.OO 105.00 120.00
H) ENERGYrt .10
l;-
0
<
et



<. ( (

8
•a

'Tj 01)
..... FEEDBRCK"QQ

•

8 x
N
• • .. EULER SOL
~

o~
~

~· .-. NOM INRLIE

· 8 +..
>- •....

~rt....
~ f!0

W0-
CD g8<
(II 1-.
trJ -~::s 1-_
et cI.t1

~.. 8.... •U1 80
0
0 ~.OO 45.00 60.00 7 .00 ~.OO 105.00 120.00
HI ENERGY .10rt

t-
o
<et

" ,"



" ")

( ( (

8
•

>n 0
1-" .~oq

EULER SOL•
N X• 8~ FEEDBACKU1 ·

~·
O~. N NOMINAL.....

)IE +· 8> ..
.... ·rt

,~
....
IT

~ ~
-' 0-

ct W
<: ga~.

lIJ t-.
::1 -~CD t-_
t1 .J
~ a:..
01 80 •0

80

til ~8.00 51.33 64.67 78.00 9~.33 ·104.67 1-18.00rt
tr ENERGY .10
It
~

0

-=



( ( (

118.00104.6778.00 9~.33

.10
61.33 64.67

ENERGY

,-r----r---r------.-------,r------r------.~ULER SOL

X
FEEDBRCK

~

NOH INRL
~

8
'TI •
.... ' 0

QCl C')•
N
•
~

80-

•.
·o~-. •)-.... 8rt.... ·a-

~Po
CD

~ < W
N 01 galIJ

=' 1-.
CD .....2t1

~ 1--
-'.. a:

~

0
0 80
0 •
.... 2.38.00rt

tf
It....
0

-=



X

Fig. 2.47 Interceptor Path with y as Running Variable

93



Fig, 2.48 InterceptorPath withouty as RunningVariable
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SECTION3.1

PREFACE

There has been interestfrom the beginningof optimal-flight

studiesin approximationsfeaturingsimplifiedvehiclemodels. Re-

presentationof drag as the drag for level flight leads to an inter-

mediate vehiclemodel in which path angle y takes on the rBle of a

control variableand the order of the system is reducedby one. An

additionalorder-reductionleads to an "energy-state"model with al-

titude or speed as a control variable (Refs.22, 23 and 24). This is

reviewed in Ref. 43 which appearsas Chapter4. The presentChapter

examines optimal symmetricflight with the intermediatevehiclemodel.

Optimalflight in the verticalplane with a vehiclemodel intermediate

in complexitybetweenpoint-massand energy models is studied. Flight-

path angle takes on the rSle of a control variable. Range-openproblems

featuresubarcs of verticalf!ightand singularsubarcsas previously

studied.

The analysis is based in part upon an explorationof Euler solutions

for the path-angle-as-controlmodel carriedout in Ref. 50. The present

analysis examines higher-orderoptimalityconditionsand "chattering-

control" phenomena. The weaknessesof the model will be seen as more

extensivethan previouslynoted. The class of altitude-speed-range-

time optimizationproblemswith fuel expenditureunspecifiedis

investigatedand some interestingphenomenauncovered. The maximum-

lift-to-dragglide appears as part of the family,final-time-open,with
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appropriateinitialand terminal transientmaneuvers. A family of

climb-rangepaths appears for thrust exceedinglevel-flightdrag, some

members exhibitingoscillations. Oscillatorypaths generallyfail the

Jacobi test for durationsexceedinga period and furnisha minimumonly

for short-durationproblems.

Minimizingpaths of long duration follow a certaincorridorin the

V-h chart. The featuresof the family sharpenfor the specialcase of

thrust and drag independentof altitude,and considerableanalytical

attention is accordedto this for the insightit providesto the more

generalmodel. The problemof "steepest climb" is found to be ill-posed

with the vehiclemodel under consideration,straight-vertically-upward

maneuver sequencesbeing furnishedby a family of paths alternating

between upward and downwardverticalflight and includinga limiting

"chattering"member.

SECTION 3.2

INTERMEDIATEVEHICLEMODEL

The point-massdynamicalmodel of aircraft flight incorporating

the assumptionof thrust-along-the-pathis given by

= g F(T-D) - siny ] (3-I)w

= Vsiny (3-2)

= Vcosy (3-3)

W :Q (3-4)
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Here V is airspeed,h altitude,x down-range,W weight of fuel consumed

y flight-pathangle,T thrust,D drag, g the accelerationdue to

gravity, L lift and Q the fuel-consumptionrate.

The sweepingassumptionthat drag can be approximatedby its level-

flight value is next invoked. This permitsthe deletionof equation

(3-5) and the elevationof path-angley to control status. Lift coef-

ficient,CL, or angle-of-attack,_ , previouslya controlvariable,is

correspondinglyassumedto be such as to satisfy (3-5). There is

obviouslytroubleahead with this modellingshould Y turn out to be large

in optimizedmaneuveringor, worse yet, should y exhibitjump behavior.

The optimal-controlproblem to be treated,then, is the minimization

of a functionof the final values of the state variablesand final time.

The Hamiltonianfunction is

I __T-___]_siny} + _hVsiny+ _xVCOsyH = _Vg W -

+ (3-6
and the Euler-Lagrangeequationsare

_V = - _V _--- (T-D) _ Xhsiny _ _xCOSy _ _Q B__q (3-7)BV BV

: _ B (T-D) _ x_Q (3-8)_h - _VW B_ Bh

ix = 0 (3-9)

i_ : 0 (3-I0)

and

-_V gcosy + _hVCOsy- _xVsiny= 0 (3-11)
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In the following,the time derivativesof (3-11)will be used to

eliminatethe time-varyingcostates in favor of the controly and

derivatives. Note that this is somewhatformal since i may not exist.

Using equations(3-7) - (3-11)one may now proceedto eliminatethose

costateswhich are variable in the Hamiltonian. Using (3-11)

V
_V = g (_h - _x tany) (3-12)

and hence

v
iV = g (_h - _xtanY) + g (_h - _x_sec2Y) (3-13)

substitutingfor _V from (3-12) in (3-8),

_h + _ (_h - _xtanY) B___(T-D)@h+ _W @--_Bh= 0 (3-14)

Using (3-13)in (3-7) and using equations(3-I) and (3-12),one obtains

a second expressionfor _h as

_h + _h_['(TvD_) +_-(T-Dl_v

[_--- - _sec2y _tany I-_- + _(T- D)_
+ _x Vcos_ - W

Equations(3-14)and (3-15)may now be used to obtain an expressionfor

_h in terms of _x and _.

[2V(T-D) V(T-D_ -v_ j

I { _ V(T-D) R_vV(T-D)} +_ ysec2y]- Xx tany _ - V-- Vcosy

- V _ : 0 (3-16)
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The expressions(3-12)and (3-16)may be used for eliminating_V and _h

in the Hamiltonianwith the followingresult:

-Xx _h V _-V - cosy

Note that

E ]
E = Constant

V2
where E = h +_, the specific energy.

In order to investigatethe implications of this complicated

expression, consider first the case of free final value of range x and

fuel W. If the final values of these variables are left open, then the

natural boundary conditions _x = 0 and _ = 0 apply and the optimization

problem is a trade-off between final values of time t, altitude h and

airspeed V, the maximumor minimum value of one of these variables or some

function of these variables being sought without regard to range or fuel

consumption. In equation (3-17), if the transversality condition for

minimum time, H = -I, is imposed, the well-known energy-climb schedule is

obtained.

One notes that, in this case, equation (3-17) can be satisfied

either by cosy = O, vertical flight, or by vanishing of the bracketed

expression, viz., the partial derivative of specific excess power V(T-D)

with respect to altitude with specific energy held constant. Thus, the
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solutionof this, or any, h-V-t optimum problemis made up of vertical

climbs, verticaldives and "energyclimbs" pieced togetherin the proper

order. Similarconsiderationsapply if fuel expenditurerather than

time is to be minimized. In this case H = O, _X 0 and _ l, and

equation (3-17)yields the minimum-fuelclimb path with fixed throttle

in the V-h plane.

If range isto be maximizedor minimizedwith final time and fuel

, = ¥I and H = _ = O, and a first-orderdifferentialunspecified then _x

equationfor path inclinationemergesas follows:

- -cb-s-y _ 0 (3'18)

If one chooses _x = -l and a fixed value of H (to be determined),
+

with _ = O, expression (3-17) is the Euler equation for maximizing

range-to-climbwith fixed final time. With H = O, _x = -l and a fixed

value of _, similarly,the maximum range to climb trajectorywith

fixed final value of fuel is obtained. It may be noted that the maximum-

range-to-climbproblem is ill-posedin that the range-to-climbfor thrust

greaterthan drag without time or fuel constraintsdoes not have a
i

maximum,or even an upper-bound. Further,fixed-throttlerange-fuel

trajectoriesare not of significantinterestin practicalsituations.

Hence, attentionwill be focusedon the problemof maximizingthe range-

to-climb with a specifiedfinal time (fixed H _ O, _x = -l).

The system (3-I) - (3-3) and (3-18)generatesa trajectoryfamily

for the range problem. The possibilityof obtainingananalytical

solution of the system for the case of thrust and drag as arbitrary

functionsof altitudeand air speed is remote. However, using the
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assumptionof constant-densityatmosphere,with thrust and drag de-

pendenton airspeed only, one can obtain an analyticalsolutionto

this system (Ref. 50). The expression (3-18)can be rewrittenas

_ V IB _B I (T-D)cosy TT_D) _--h- V _--V (3-19) "

In the following,severaltransformationsof independentvariable

are carriedout without attentionto monotonicityrequirements,the

thought being to fit the solution segmentsobtained into familiesin

due course. The temptationof range as independentvariablewill be

avoided,however, in anticipationof purely-vertical-motionsegments.

In the interestof brevitywe designate_ _ (T-D)/W

1 dy (-siny+ _) g_I@ g B 1'. cosy dV = B--h-V TV _ (3-20)

With altitude-dependencesuppressed,the path angle y is determined

as the solutionof the first-orderdifferentialequation

l d_ (siny - _) - d_ l (3-21)cosy dV dV

Furthersimplificationis obtainedby anotherchange of independent

variable,this time from V to

l dy (siny - _) = l_ (3-22)•: cosy d_

If the r_les of independent and dependent variables are now regarded as

. reversed,this equation takes the form

•:" 2 A

.: d___+ l _ siny = 0 (3-23)',/ dy cosy - I_ cosy
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which is the form of the Bernoullidifferentialequation

d___+ fl(Y) 2 + f2(y) _B : 0 (3-24)dy

with B = I. Accordingto Kamke, (Ref. 51), this equationhas the

solution

/fl (Y)
_ : E(y) j_-(-_--dy (3-25)

where
dy

E(y) = e (3-26)

with identificationof fl and f2 as

flry_,, _ 1 (3-27)COSy

f2(y) = _ I sinyc--_ydY (3-28)

The solution (3-25)becomesas follows

[siny dy
E(y) = e -Jc---_ = eInc°sY = cosy (3-29)

[J= cosy dy + = siny + C cosy (3-30)
cos2y

Before expressingthis relationshipin the form y = y(_), .werelate

the.integrationconstantC to equilibriumvalues of _ and y corresponding

to unacceleratedflight. Such values may be designatedwith a super-

scribedbar:

= sin_ (3-3i)

C = coty (3-32)

The solutionmay then be expressedas: i

siny siny + cost cosy = _ (3-33)
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or as

Y =_+ cos-I [_] (3-34)

Here _ is the value of _ in unacceleratedflight and

- -l -
y = sin _ (3-35)

In Figure 3.1, the solution (3-34)is illustratedfor variousvalues

of _. The range of angle y has been restrictedto _ 180° in this plot.

With this solution at hand, the state historiescan be generated.

If the thrust is taken as zero, the state-Eulersystem produces the

flattest-glidetrajectory,flown with maximum lift-to-dragratio, along

with a family of transientsto and from this point (Fig. 3.2). When a

positivemargin of thrust over drag exists,a family of oscillatorysolu-

tions is generatedfor variousvalues of ; as shown in Fig. 3.3. It may

be noted in Fig. 3.3 that the innermostpoint correspondingto _ = .2

in V-y space correspondsto flight at (T-D)max,while along the outermost

closed path, the flight path angle y switches between+ 90°.

With the availabilityof the Euler solution (3-30)to the maximum-

range problemwith altitudedependencesuppressed,one may proceedto

obtain a similarsolutionto the more general Euler equation (3-17)

using variationof parameters (Ref. 52). Equation (3-17)may be

writtenas

_cosy a_ cos2y H l a (V_)
k = -g _ aV _x V2_ aV

Y xx V2 aV (3-36)
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As in equation(3-22),the independentvariableis changedfrom

timeto airspeedresultingin

d_yy(siny - _) Cosy d__ cos2y H 1 d (V_)
dV _ dV xx V2 dV

+ c°s2y xx V2 d-V-
(3-37)

Rearranging,one obtains

-d-_c(siny - _) c°s_c @_ - cos2y H l d (V_)
dV _ BV xx V2 dV

+ c°s2y xx V2u dV (3-38)

•Equation (3-30) is the analyticalsolutionto the differentialequation

(3-38)with H and x_ both zero. The expression (3-30)may be differentiated

with respect to airspeedto obtain

l _-_-=(cosy - C siny) d_+ dC- -2 DV dV _-_cosy (3-39)

Note that C is no longer a constant here, but a functionof the independent

variableV. Substitutingfor _ in (3-39)from (3-30)

dy dC ]l _p _ (cosy - C siny) _-_+_-v-COSy
p @V (siny + C cosy) (3-40)

Using equation (3-40) in (3-38)

cos2y dC _ cos2y H ! d (V_)
siny + C cosy dV x dVx V2_

c°s2y Xx V2u dV (3-41)

+
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1 from (3-30),Since p = siny + C cosy

dC [ H { 1 + l _V}cos2y d-V= cos2y - _ V--2-_Vp

+-_x-i_+ d_JJV 2 dV V_ (3-42)

The quantitieswithin the { } bracketscan be identifiedas

V2u Vu2 dV

and

d--V- = V_ dV Vu2 d-V+ V2 (3-44)P

From which

[ ]dV- xx dV -_ xx dV (3-45)

Equation (3-45) is readilyintegratedto yield

H 1 _W Q
C - _ V_ _ Vu + Cl (3-46)

x x

where Cl is an arbitraryconstant. Hence for the time-range-fuel

problem,the solutionwith altitude-dependencesuppressedis

l siny _- I H _W Q "_ Cll cos" _ (3-471
_-- _xvp _x Vp
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To expressthe above result in the form y = y(_), we need to

relate the integrationconstant Cl to equilibriumvalues of _ and y

correspondingto unacceleratedflight. Unlike the situationin the

simplerproblem,the interpretationof equation (3-47) is not straight-

forward.

From a practicalviewpointthe time-rangeproblem is of main

interestsince minimum-fuelproblemswith fixed throttleare rare.

Fuel-rangeproblemwill not be discussedfurther in the presentpaper

and in subsequentdevelopmentthe fuel multiplier_ will be taken

as zero.

Investigationof equilibriumpointswith _ = 0 results in a plot

of the values of H/_x vs airspeed as shown in Fig. 3.4 for a parabolic

(T-D)distributionillustratedin Fig. 3.5.• In Fig. 3.4 three separate

regimes can be identified. H/_x values to the left of the (T-D)max

velocityare positivewhile those betweenthe (T-D)max point and the

V(T-D)max point have a negative sign. All H/_x values to the right of

the speed for V(T-D)max are positive. Any of these valuesmay be used

to evaluate the arbitraryconstant Cl as follows.
As in (3-31)

= sin_ (3-48)

V = V llEquilibrium of_--value
_x (3-49)

: H .I_+ Ci (3-50)cot
or

C1 : cot_ H 1-x (3-51)
using (3-51) in (3-47)

]1 siny : + cot_ cost (3-52)V__x V_
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putting+c°t lanusing°w°1kn°wnt ign°
metric identity,

,_ (3-53)

Equation (3-53) is the Euler solution to the time-rangeproblemwith

altitude dependenceof p suppressed. In Figs. 3.6, 3.7 and 3.8, the

analyticalsolutionevaluatedfor representativeH/xx values from each

of the three regimes is shown. Fig. 3.6 and 3.7 indicateoscillatory

solutionsin the neighborhoodof a stable equilibriumpoint. The

similarityof these figuresto Fig. 3.3 is striking. The solutionsin

Fig. 3.8 are non-oscillatoryand bear some resemblanceto Fig. 3.2.

Summarizing,one notes that the range problemhas oscillatory

solutionswhen a positivemargin of thrust over drag exists. With zero

thrust the solutionobtained is the flattestglide with a family of

transientsto and from the maximum lift-to-dragpoint. For the time-

range problem,values of H/xx to the left (low-speedend) of the

V(T-D)max point produceoscillatorysolutionswhile, on the right of the

V(T-D)max point, a family of transientsto and from the equilibriumpoint

defined by the choice of H/xx is obtained.

SECTION3.3

LEGENDRE-CLEBSCHNECESSARYCONDITION

From the Euler-Lagrangeequations,with x_ = 0

BH
By XV g cosy + Xh V cosy _ Xx V siny (3-54)

and
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B2H

8y2 - (_V g - Xh V) siny - _xv cosy (3-55)

Settingthe left-handside of equation (3-54)to zero as required

for a stationaryminimumof H leads to

_hv - Xvg _Vg - XhV
tany - x V or -x V -- (3-56)

x x

From (3-56), then

(XhV - Xvg)O
siny = (3-57)

_x hv - Xvg)2 + _ 2V2x

and

Vo

cosy= x (3-58)
_/(;_hv - Xvg)2 + Xx2V2

where _ = + l

Using (3-57) and (3-58) in (3-55), it is possible to determine o.

Next, one may employ the transversality conditions for the range

problem. These lead to

B2H
_x = l, ---_>0 if y lies in the second or third quadrant

By (3-59)

B2H
Xx = -l, ---2-<0 if y lies in the first or fourth quadrant (3-60)

@y

viz, Xx = l for range minimizationand Xx = -l for range maximization.

From (3-59) it is clear that, with no restrictionson path-angley,

the minimum-range-climbtrajectoryis that which maximizesthe range in

the negativedirection,a result which is perhapsobvious. The impli-

cation is that, with no constrainton the final value of time or fuel, the

"steepest-climb"problemdoes not possess a minimum or even a lower bound.

111



Attentionis drawn to the solutionto this problemgiven by Miele

(Ref.53) using the Green's theoremdevice. Accordingto Ref. 53, the

optimaltrajectoryfor the "steepestclimb" problemconsists of a central

path flown along the (T-D)maxlocus in the airspeed-altitudechart with

verticalclimb/divetransitionsat the ends to meet the boundary

conditions,if they are off the (T-D)maxpath. There is an important

differencein vehiclemodellingfrom that of the presentwork which should

be noted as a key to resolvingdisparitiesbetweenthe characterof

optimal paths emerging: The analysis of Ref. 53 in essencereplaces

cosy in equation (3-3) with unity so that the problemsolved is maximum

altitude in a given distance (arc length)rather than in a given range.

Consider,next, the impositionof limits on path-angley, say -90°

y _90 °. In this case, since final time is unspecified,it is clear

that by alternatingbetweenvertical-climband vertical-divepaths, the

range-to-climbcan be made identicallyzero. This is a consequenceof

the intermediatevehiclemodeling in which there is no limit to the path-

angle rate.

It is of interestto examine vertical-flightsequencescomprisedof

alternatingup and down segments. Consider,for example, the case in

which specified initialand final altitudesand velocitiescall for a

net increase in specificenergy. An initialvertical-flighttransition,

either up or down as appropriate,is performedto the neighborhoodof

the maximum of specificexcess power (speedV in Fig. 3.9). Choosing a

pair of reversalairspeedsV (belowV) and V (aboveV), one constructs

an alternatingsequenceof straight-upand straight-downtrajectorysegments.
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In the case of net energy gain, both V* and V should correspond

to positive E = V(T-D) The relativedurationof the segmentscan beW

adjustedso that the time-averagedspeed is V. If V* and V** are

chosen sufficientlyclose to V, the averageenergy rate can be made as

close to the maximumvalue as one wishes. The motion during this alter-

nating sequence is vertical and net-straight-upas long as the energy

rates at V and V are positive. The limitingcase of chatteringat

correspondsto minimum-timeas an auxiliaryperformanceindex, thef

primaryone, "steepness",being independentof the parametersof the

sequence. A final transient,straight up or straightdown, is flown

to meet the final specificationson speed and altitude. In the case

of net energy loss specified,speeds V and V with negativeenergy

rates should be chosen for the rectangular-waveconstructionof the path-

angle history.

Returningto the maximum-rangeproblem,it should be noted that the

Legendre-Clebschnecessaryconditionis met in strengthenedform for

values of the path angle y in the first or fourth quadrants. However,

physicalreasoningmakes clear that a range-maximizationproblemwithout

time or fuel constraintswill not possessa propermaximum, or even an

upper bound. In view of the above, the problemof interestis to maximize

the range of climb from an initial (V,h) pair to a final (V,h) pair in a

fixed time. This problem is of value in studiesof the type reportedin

Ref.54 for a point-mass-modelledvehicle.

It may be noted that in the cases of time and/or fuel minimization

problemswith range open, the Legendre-Clebschnecessaryconditionis
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met only in weak form along centralarcs and, hence, these trajectories

fall into the class of singularextremals.

SECTION 3.4

CONJUGATE-POINTTEST

The Legendre-Clebschnecessaryconditionis met with a margin for

the time-rangeproblemand hence the Euler solution (3-17)with _ = 0

furnishesa relativeminimum for initialand terminalpoints sufficiently

close together. For extremalsof finite length, however,the task of

ensuringthat the second variationis non-negativefor admissible

neighboringpaths leads to the accessory-minimumproblem in the calculus

of variations. This in essence boils down to a search for a system of

admissiblevariations,not identicallyzero, which offer the most severe

competitionin the sense of minimizingthe second variation. If a system

of nonzerovariationscan be found which makes the second variationzero,

then it is clear that a neighboringpath is competitiveand that the

test extremal furnishesat best an improperminimumand at worst a merely

stationaryvalue (Ref. 55). The first value of the independentvariable

x = x > xo for which such a nontrivialsystem can be found definesa

conjugatepoint.

Followingthe analysisof Ref. 55 for the Mayer problem,the rank

of the matrix of variationsof states and the multipliercorrespondingto

the state being minimizedwith respectto the initialvalues of costates is

evaluatedalong the test extremal,viz.
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The rank of _x2 Bx2 Bx2
....... _},

_Xlo _'20 no

!

axn axn @xn

BXl0 @X20....... @/tno
(3-61)

B_l B_l B_l
• • • t • • •

_Xl0 @x20 @Xn0
-- n

providesthe criterionfor the existenceof a conjugatepoint. If

the rank of the test matrix (3-61)drops at any point along the test

extremal, it is indicativeof the occurrenceof a conjugatepoint•

For the time-rangeproblem, if the independentvariableis changed

from time to range, the equationsof motion become

h' = Tany (3-62)

V' = g.(T-D)_ g Tany (3-63)WV Cosy V

The optimal-controlproblemthen is to maximize the final value of

altitude 'h' for a specifiedrange with time fixed. With the inter-

pretationof H as the time multiplier,the test matrix (3-61) becomes

115



u
m I m

_V BV BV BV BV BV

a_ho aH0 aY0 a_ho aH0 aY0

at at at at at at
= (3-64)

aXho aH0 aY0 aH0 aY0

axh a_h axh 1 0 0

_h 0 - -
aH0 aY0

Note that time appears in this problemas a state-likevariablewith

l
t' - V Cosy (3-65)

A prime on the variablesdenotesdifferentiationwith respect to the

range variable x.

From equation (3-64),the sign of

aV__V_. at aV at
--- • (3-66)

BY0 BH0 BH0 BY0

evaluatedalong the Euler solutiondeterminesthe rank of the matrix

(3-64). If the sign changesat any point on the time-rangetrajectory

it is indicativeof a conjugatepoint.

The Euler solutionobtainedfor the time-rangeproblemwith

altitude dependenceof p suppressed,may now be tested for conjugate

points. In view of the particularlysimple form of the conjugate-point

test for this problem, it seems reasonableto attempt to obtain analytical

approximationsfor the partialderivativesin equation (3-66).

Linearizingthe equationsof motion and the Euler equation (3-17)with

range as the independentvariableabout an equilibriumpoint at a

particularaltitude,one obtains
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aV' : aoaV - alaY (3-67)

6t' = -a2aV + a36Y (3-68)

ay' = a4aV - a5aY + a6aH (3-69)

Where:
j'

g_ __(T-D) (3-70)a0 - WV cosy aV

aI = _ (3-71)

a2 _ l (3-72)
V2cosy

sin_

a3 - V cos2y

a4_ cosy gH+ a(T-D) g I i coS_x ]V4 xx aV V2(T_D) V

V(T_D)2 --aV 1 cos_V Xx

+ V_ B2(_-D)[S__C H l] (3-73)BV2 _x

a5 = a0 (3-74)

_ cosl 9-- rv a(T-D)+ (T-D)]a6 (3-75)
V3(T-D) _x L aV J

Equations (3-67), (3-68) and (3-69) constitute a linear, constant-co-

efficient system which can be put in the following form using Laplace

transforms. (Initial conditions on aV and at are zero.)

-al= (3-76)

ay_O} s2+(ala4_a0a5)
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aVs(__)_: -ala6 (3-77)

6H(O) s[s2+(ala4_aoa5) ]

-_: - [(aoa3-ala2)-a3s] (3-78)

s[s2+(ala4-aoa5)]

_s s) i[ (aoa3-ala2)-a3--s_a6 (3-79)

) = _ s2[s2+(ala4_aoa5 )]

putting m_ = (ala4-aoa5) (3-80)

and

-a 3
T - (3-81)

aoa3-ala2

and cancelling out commonconstants in the numerator, one can bring eqs.

(3-76) - (3-79) to the form

m2
___ n (3-82)

s2 + 2n

m2
_V__ n (3-83)= 2
aH(O) s(s 2 + mn)

(I+Ts)mR (3-84)

_-y'--_:S(S2 + m_)

6ts (I+Ts) R
_H(O) = s2(s2 + 2 (3-85)n

Equations (3-84) and (3-85) may be further simplified using the

expression (3-82) and (3-83).
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aV(s)
_-0_- + T: "_y-_ (3-86)

2

_n 6Vs_: +T

aN(O) s2(s2 + _2n) _-HT_- (3-87)

Equations(3-86)and (3-87iimply

6t(x___): _ + T 6__V_x(___ (3-88).
aYO aHo _YO

2

at__) : L-l mn + T aV(x) (3-89)
aH0 (s2 + ,,,2)s2 aH0n

Using (3-88)and (3-89)in (3-66),

aV . at_ aV at _ 6V_L-I . mn

aYO aHo aHo aYo aYO s2(s2 + m_)

2
-/_ _ -j (3-90)

consequently, one needs to obtain the inverse transform of only three

transfer functions, namely

2
§V(__ _n

2
_YO ' _H-_ ' s2(s 2 + mn)
2

when mn is positive, the roots of the denominator polynomial are complex

conjugates and

aV at aV at

_y--_ aH0 aH0 ay0 _ _nxSin(_nx) + 2Cos(mnX)-2 (3-91)

The right-handside of the(3-91), after being zero at x = O, will

subsequentlybecome zero at
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x = 2___ (3-92)
_n

implyingthat conjugatepointswill occur every full cycle of oscil-

latory solution. Hence, if the equilibriumpoint for the given H/_x

is stable,i.e. it produces an oscillatorysolution,a conjugatepoint

will occur at the end of one full cycle of the oscillation. On the

other hand, if _ is negative,the roots are real and distinct,symmetric

about the imaginaryaxis. In this case

aV at aV at •

aY0 aH0 aH0 aY0

- x.d.sinh(dx)+ 2 cosh(dx) - 2 (3-93)

where

Expression {3-93) is zero only at x = O. In this case, conjugate points

do not occur. From (3-93), then, if the equilibrium point for the given

H/x x is unstable, conjugate points will not occur. ,

The conjugate-point test is now applied to the three regimes of

H/_x described earlier. As expected, for all values of H/_x to the

left of V(T-D)max point, conjugate points occur, indicating that the

Euler solutions obtained with these values of H/_x do not afford a

maximumto the time-range problem over long intervals. Euler solutions

obtained with H/_x to the right of the V(T-D)max point, on the other

hand, satisfy the Legendre-Clebsch necessary conditions and Jacobi's

necessary condition, and hence are optimal trajectories for the time-

range problem.
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SECTION3.5

NUMERICALSOLUTIONOF THE TIME-RANGEPROBLEM

With the insight gained for the time-range problem with altitude

dependence of thrust and drag suppressed, one may embark upon a numerical

study of the more general case in which the aerodynamic coefficients are

functions of Mach number and the thrust is Mach-altitude dependent. The

data for a version of the F-4 aircraft with afterburner operative are

used in this study. A cubic-spline representation (Ref. 44) is used to

compute thevalues of zero-lift drag coefficient and the induced-drag

coefficient. The drag coefficient is then computed as

CD = CDo(M) + CDcL2(M) C_ (3-94)

W

- CDo CDcL2where CL J_V2S and and are standard notation.Z_
The drag is then obtained as the usual product of drag coefficient,

dynamic pressure and the aircraft wing area. A cubic-spline lattice

(Ref. 44) is used to compute the value of thrust at a given altitude and

Mach number. Atmosphere density and speed of sound as functions of

altitude are interpolated from standard-atmosphere tables using cubic

splines. The system differential equations are integrated using a fifth-

order Runge-Kutta-Verner method with variable step-size.

A plot of H/_x vs airspeed for equilibrium flight conditions
v2

corresponding to unaccelerated flight with specific energy, E : h + _-_,

frozen at 60,000 ft is shown in Fig. 3.10. The three regimes of H/_x

identified earlier in this chapter can be seen in Fig. 3.10. Numerical
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integrationof the Euler equationwith H/_x values picked from each of

these regimes indicatedthat the solution for H/_x values to the left

of V(T-D)max are oscillatory. Numericalsolutionusing H/_x to the

right of V(T-D)maxpoint (high-speedend) are non-oscillatoryand violent

in character.

Next, a numericalconjugate-pointtest is set up based on a scheme

suggestedby Cicala (Ref. 56). In this scheme the partialderivatives

with respect to _i required in the matrix (3-64)are calculatedapproxi-
o

mately in terms of differencequotients. Small incrementsin initial_i

are employed in the evaluationof neighboringsolutionsof the original

system of Euler equations.The conjugate-pointtest was carriedout for

variousvalues of H/_x picked from Fig. 3.10. It was found, as expected,

that only the non-oscillatorytrajectoriescorrespondingto H/_x values

on the right of V(T-D)maxsatisfythe no-conjugate-pointcondition. Oscil-

latory trajectorieslindicatethe existenceof a conjugatepoint after a

cycle of oscillation.

From the foregoing,it is clear that the solutionto time-range

optimal-controlproblemare non-oscillatoryand violentlyunstable in

character. Within the permissiblerange of H/_x, as H/_x increases,the

Euler solutionsapproachthe energy-climbschedule in the (V,h) plane.

Of particularinterest in practicalapplicationsis that trajectorywhich

terminatesat the "dash-point"on the flight envelope,the maximum-

level-flight-speedpoint. To determinethe value of Hi_x which will

accomplishthis, a plot of the locus of equilibriumpoints corresponding

to unacceleratedflight at constantenergy is made. Once this value of
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H/_x is found, what remainsto obtain the optimal trajectoryis to

determinethe initialvalue of the controlvariable,y, for a given

set of initialconditionson altitudeand airspeed.

In Fig. 3.11 the level-flightenvelope for the F-4 aircraft is

shown along with the energy-climbschedule. The discontinuityin the

energy-climbscheduledue to transonicdrag rise may be noted (Ref. 41).

The curve B is the locus of equilibriumpointsat each energy level

corresponding to unacceleratedflight with the appropriateH/_x. The

discontinuitydue to transonicdrag rise is again visible. An Euler

solutionfor initialvalues of airspeedand altitudeclose to the equi-

libriumlocus is also shown. To determinethis trajectory,an iteration

was undertakenon the initial value of the controlvariable,y. With

quadruple precisionon the IBM-370/158,the initialpath angle had to be

determinedto 13 significantdigits. To illustratethe sensitivityof

the Euler solutionto the initialvalue of path angle y, the last digit

of Yo is perturbedin the positiveand negativesense,with the tra-

jectories l and 2 shown in Fig. 3.10 resulting.

A few more Euler solutionswith initialconditions far removedfrom

the equilibriumlocus are shown in Fig. 3.12.

SECTION3.6

DISCUSSIONAND CONCLUSIONS

In this chapter,optimal flight in the verticalplane with a

vehiclemodel intermediatein complexitybetweenpoint-massand energy
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models was studied. Flight-pathangle takes on the r_le of control

variable in the model and range-openproblemsfeaturesubarcsof

vertical flight and singular subarcsas previouslystudied.

The minimum-rangeclimb problem (the steepestclimb of Ref. 53)

has been found to have no minimum, not even a lower bound. In Ref. 53,

the steepest-climbproblemwas studiedusing the Green'stheoremdevice

of Refs. 57 and 58. There is an importantdifferencein vehiclemodel-

ling from that of the present chapterwhich should be noted as a key to

resolvingdisparitiesbetween the characterof optimal paths emerging.

The analysis of Ref. 53 and 57 in essencereplacecosy in equation (3-3)

with unity so that the problemsolved is maximumaltitude in a given

distance (i.e. arc-length)rather than in a given range. This is a

necessitywith the linear-integralapproachwhich can accommodateonly

problemsof dimensiontwo and a very specialform of state equations.

The solutionto the distance-climbconsistsof a central path flown

along a (T-D)max locus in the V-h plane with verticalclimb and dive

transitionsat the ends to meet specifiedboundaryconditions.

From physicalconsiderationsit can be seen that when a positive

margin of thrust over drag exists,the maximum-rangeclimb trajectory

without time or fuel constraintshas neithera proper maximum nor an upper

bound. In view of this fact major attentionhas been accorded to the time-

range problem.

For the specialcase in which the thrust and drag depend only on

airspeed,a plot of the ratio of time and range multipliersH/_x for

equilibrium,correspondingto unacceleratedflight, revealedthe
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existenceof three regimes. Positivevalues of H/Xx on the low-speed

side of V(T-D)max and all negativevalues of H/xx were shown to yield

oscillatorysolutions. Althoughthese meet the Legendre-Clebsch

necessaryconditions,they fail the conjugate-pointtest. Euler solu-

tions with H/xx chosen to the right of the V(T-D)max point satisfy

both Legendre-Clebschand Jacobi necessaryconditionsand are non-

oscillatoryin character. Dependingon the nature of aircraftdata,

unstableequilibriumpointsmay sometimesappear for certainH/xx

values to the left of the airspeedcorrespondingto V(T-D)max, at

certainenergy levels. These normallyhave short durationand are not

of major interest.

Numericalsolutionof the Euler equationand a numericalconjugate-

point test for the F-4 aircraft data reinforcedthe conclusionsarrived

at in the analyticalexercise.

From a practicalviewpoint,the time-rangetrajectorieswhich

terminateat the "dash-point"on the level flight envelope are of

particularinterest. The multiplierratio H/_x correspondingto this

point is determinedusing the locus of equilibriumpoints at each energy

level correspondingto unacceleratedflight. With this value of H/xx, the

Euler solutionfor any (h,V) pair is obtainedby iteratingon the

initialvalue of y.

Euler solutionswere obtained for various initialconditions. One

observesthat these tend to funnel rapidly into a certain corridor in

the V-h chart, in the vicinityof the equilibriumlocus corresponding

to unacceleratedflight. This featureof the solutionfamily can be

exploitedin practicalsituationsto simplifythe computationof optimal

trajectories.
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Fig.3.1 Fligh_-Path Angle vs Acceleration variab!e for _he

Range Problem
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Fig.3.2 Flight-Path Angle vs Airspeed in Gliding.Flight

for the Range Problem
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Fig.3.3 Flight-Path Angle vs Airspeed in Powered Flight

for the Range Problem
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Fig.3.4 H/kx vs Airspeed for EquilibriumFlight (Parabolic

(T-D)/W distribution)

A : (T-D)max

B : V(T-D)max
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Fig.3.8 Representative Analytical Solution for H/_x in the

Third Equilibrium Regime

]33



0 V

Fig.3.9 A Parabolic distribution of Specific Excess Power

vs Airspeed
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Fig.3.11 Flight Envelope, Energy Climb Schedule,

EquilibriumLocus and a Climb-Dash Euler Solution.

A : Energy Climb Schedule

B : EquilibriumLocus

b : Climb-Dash Euler Solution
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Fig.3.12 Euler Solutions for the Climb-Dash Problem

a,b,c : Euler Solutions
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SECTION4.1

• : PREFACE

Fritz Kaiser, a flight-test engineer at Messerschmitt, A. G.,

introduced the conceptof "Gesamth_he" ("resultant height,) in con,

nection with aircraft minimum-time climbs (Refs. 22 and 59}. This is

the sum of potential and kinetic energy per unit weight. Subsequently

it has been referred to as "energy height" (Refs. 23 and 24) and

"specific energy" (Ref. 60). Its use as a state variable in trajectory

work is attractive because it is a "lower" variable than either

altitude or velocity (Refs. 27, 61). Attempts to synthesize "slow" state

variables are described in Refs. 25 and 61 in connection,with singular-

perturbation procedures. The present development attempts to synthesize

both "fast" and "slow" variables for the minimum-time-to-climb problem

along lines explored earlier in an appendix to Ref. 61. In the interest

of brevity, familiarity on the part of the reader with the development

of Ref. 25 is assumed in the following; however, knowledge of the

relatively inaccessible Ref. 61 appendix is not. Minimum-time climbs in

"energy" approximation are first reviewed and consideration given to

choice of Variables. A pair of variables which seem to offer attractive

replacements for altitude and airspeed in singular-perturbation procedures

is suggested. Use of the new variables in an energy-modelled climb-dash

problem is illustrated.
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SECTION4.2

CLIMB EQUATIONS

The equationsof motion for climbingflight are given in terms of

conventionalstate variables,altitude,h, flight-pathangle, y, and

velocityV, as

: V siny (4-I)

L
= _ ( _ - cosy) (4-2)

= _--- - g siny (4-3)

Here T(h,V) is thrust, D(h,V,L)drag, L lift and g the accelerationof

gravity. An assumptionof thrust-along-the-pathhas been incorporated.

SECTION4.3

CHOICEOF VARIABLES

An essentialfeatureof "energy"approximationis that drag be

treatedas a functionof h and V only. This is consistentwith

approximationof siny and cosy via expansionin powers of y through

first-orderterms only and with deletionof the y term as negligible-

another featureessentialto reductionin order. With these simpli-

ficationsthe system becomes

= Vy (4-4)

= g(T-D)
W - gY (4-5)
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where now D(h,V,L)is evaluatedfor L = W.

Two new variables,@ and ,/,,are to be introducedin place of h

and V, @ to be "slow"and € "fast". .

The equationof state for @ is
o

[ + Iv -_-_ g TV]Y (4-6)

If one insists that @be independent of the control-like variable, y,

then _ must satisfy the partial differential equation

V _h - g TV : 0 (4-7)

This is satisfiedby

V2
_p: h+---

29 (4-8)

or by any once-differentialfunctionof this expression (Ref. 61). Thus

@ = E, specificenergy, is "slow" in the sense specified.

It has been usual to adopt as the second state variable,€, either

V (Ref. 27) or h (Ref. 25). Either is suitablefor analysisof the "slow"

motion, given by the single state equation

W , (4-9)

For minimum-timepassageto higher energy levels,the right member of (4-9)

is maximizedwith respectto V or h at constantE. The expressionon the

right of (4-9) is "specificexcess power", Ps' of the flight-performance?

literature(e.g. Ref. 60) and simplYp later in the presentchapter. With

a more general choice of ¢(V,h),the maximizationof (4-9) is done with
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• respect to this variableafter V and h have been replaced by suitable

• functionsof @ and € representingthe inversetransformation. The

•' resultingvalues of V, h and E are the same, however•
t

i The choice of _(V,h) matters, however,in the determinationof y

, along the "slow-motion"(or "outer")solution,as y must be such that
i •

' _ = O, in the procedureof Ref. 27. With the choice of _ = h as in Ref.

: 27, the approximationy = 0 is obtained,while if _ = V is assumed"

then

• (4-IO)Y= W

; which is, to linear approximationin y, the path angle for unaccelerated

climb• More generallythe expression

BV

= B_Vy+___V [ g(T-D) _ gy] = 0 (4-11)Bh W

is to be solved to obtain the zeroth-order"outer"approximationfor y.

The choice

: E (4-12)
suggestsitself for compatibilitywith the outer solution,because this

quantity,and thereforeits time derivative,is zero along the outer

solution' Here

V(T-D)
P- W (4-13)

is "specificexcess power",a known functionof h and V. This choice of

_ is seen to generate zeroth-order y consistent with (4-4) and (4-5) along
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the outer solution.

Contours @ = E 9 const, and ¢ = const, areshown in Fig. 4.1 for

the aircraft data of Ref. 41 (a versionof the F-4). The contoursof

= constant indicatea breakdownof one-to-onemapping associatedwith

jumps of the energy-climbpath, _ = O, betweenridges of p(h,V) (Ref.

41); in fact, the mapping(@,€)._, V)is two-to-oneand even three-to-

one within the flight envelope. This local non-invertibilityrepresents

a less-than-idealfeaturefor a coordinatetransformation;however,one

does not actually have to transformto the new variable to exploitthe

concept.

Flight-pathangle y is shown as a functionof € = E in Fig. 4.2 for

three choicesof "fast" variable: h, V and ¢. Only the "outer"

contributionsare presented. Also presentedis path angle y for optimal

climb with a point-massmodel.

Experienceis that the calculationof first- and higher-order

compositesis quite complex (Refs.41, 42). Thus it makes sense to

choose variablescarefullyso as to enhancethe fidelityof the zeroth-

order solutionas far as possible.

SECTION4.4

CLIMB-DASHPROBLEM

Consideras an applicationthe climb-dashproblem, in which a

minimum-timetrajectoryto a remote value of x is sought,where x is

down-range and, for small y, is defined by
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x : V (4-]4):

The characterof the solution is that of a combinedclimb-dashgenerally -,

faster than an energy climb (Fig. 4.3) fairinginto sustainedflightat

the high-speedpoint on the level-flightenvelope, y as a functionof E

is shown in Fig. 4.4 for the three choicesof fast variable. Solutionsof

a correspondingpoint-mass-modelledproblemfor differentaircraftdata

are studied in Ref. 41.
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Fig. 4.3 Altitude vs. Velocity- Climb- Dash
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CHAPTER5
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SECTION5.1

PREFACE J

This chapter investigates the problem of determining an atmospheric

flight-path between given end-points, that minimizes a linear combination "

of time and fuel. In the next section the trajectory-shaping problem will

be formulated for a point-mass model and rectilinear cruise will be con-

sidered as an 'outer' solution when Newtonian dynamics are 'fast.' A

subsequent section will discuss the resulting classical cruise-dash problem.

In particular, it will be shown that nonconvexity in the fuel-flow vs air-

speed graph has.important consequences in optimum-cruise problems with

time restrictions. Somecomputations will then be presented illustrating

the sometime occurrence of time-shared operation between two altitude-

airspeed combinations for optimal cruise-dash.

SECTION5.2

PROBLEMFORMULATION

While this chapter is primarily concerned with classical cruise-dash

analysis, it is appropriate to consider the connection between cruise-dash

performance and the more general problem of flight-path optimization. For

this purpose we begin with the point-mass model, albeit in a somewhat

special form:
w

2_ = V siny (5-I)
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2. _(L + c3Tsin_)c°s" _ cosyl (5-2)y = (glV) (W- E3W)

I_ (T-D)V + c3T V(cos_- I)= (5-3)
(W- c3W)

I. 9 L sin_ (5-4)_X:

; V(W - _3W)cosy

= V cos_ cosx (5-5)

= V cosy sinx (5-6)

W = Q (5-7)

These are the equations for three-dimensional aircraft flight with zero

side-force over a flat, non-rotating Earth. In these equations h is the

altitude, y the path-angle, E the energy per unit weight, × the velocity-

heading angle, x and y the Northerly and Easterly position components

and W is the fuel used. The symbol V is to be regarded as a convenient

shorthand for the quantity [2g(E-hl]I/2, where g is the acceleration

due to gravity. L and D denote the usual aerodynamic force components,

lift and drag, respectively; W is the (initial) weight of the aircraft.

T is the thrust and Q is the fuel-flow rate; each depends on a throttle

parameter, n. The angle _ is angle-of-attack, while _ is bank angle.

The parameters 1 and 2 are introduced as in Ref. 25 to motivate an

order-reduction while _3 is convenient for imbedding certain complicating

effects. In particular, with €3 = 0 the model has constant aircraft

weight and thrust along the path. Complications such as non-standard

atmosphere or winds-aloft might be treated in the same manner in terms of

ordinary perturbations.
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In additionto the dynamicalequationsthe system is subjectedto

certain other constraintsof state/control- inequalitytype:

Bl = (h - hT) _ 0 (terrainlimit)

_2 = (_ - g (E-h))_ 0 (dynamicpressurelimit) _.

B3 = (M - M) _ 0 (Mach limit)

B4 = (nW - CLqS) _ 0 (normalload-factorlimit)

B5 = (CL(M)- CL) _ 0 (aerodynamiclimit)

In these constraintsq, M, n, CL are maximum allowablevalues of dynamic

pressure,Mach number,normal load-factorand lift coefficient,respectively.

The last is a specifiedfunctionof Mach number. The path-optimization

problemwe wish to consider is

Choose the controls CL(Or _), _, and n so as to transfer the

system from a given initial point (ho, Yo' Eo' ×o' Xo' Yo) to a

given final point (hf, yf, Ef,_xf, Xf, yf) while minimizing a

Mayer-type cost function

C = _itf + _2_ (5-8)

The parameters _I and u2 are specified so as to represent a trade-off

between time and fuel. In particular, with _I = 0 and _2 > 0 the problem

is to minimize fuel while with _I > 0 and _2 = 0 the problem is to mini-

mize time. Note that the range is specified for this problem.

To 'solve'this optimizationproblemone proceedsto form the

variationalHamiltonianand with the prejudiceof foresightdefines

H = Hl + H2 (5-9)
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H1 = Xx Vcosy cosx + _y Vcosy sinx + _Q (5-10)

H2 = _h fh + _y f + hE fE + _ f (5-11)Y X X
-o

The terms such as fh in H2 are a shorthandfor the right membersof the

respectivedynamicalequations.

One might now apply the Minimum Principle(Refs.39 and 48) to this

problem,deducing the state-Eulerequationswith appropriateboundarycon-

ditions. The result would be a two-point-boundary-valueproblem involving

a fourteenth-ordersystem of differentialequations. While this may be

solvablewith modern computer software,its usefulnessin on-board intercept

guidancemight, in the current state-of-theart, be questioned•

l 2The interpolationparameters_ and separatethe aircraftequations

of motion into three time-scalesinvolving'fast', 'intermediate'and

'slow'state variables. The approachhere, as in Ref. 25, is to begin by

l 2
consideringthe problem for the reducedsystem with _ = € = E3 = O.

In this case the dynamicalsystem involvesonly three state variablesx,

y, W (note that time is state-likesince it appears in the performance

index) and seven controlvariablesh, y, E, x, u, CL and n. With €l =
2
E = 0 the first four system equationsbecome constraintsfrom which one

deduces that

= y = 0 (5-12)

L : W (5-13)

T = D (5-14)

Lift equals weight can be 'solved'for CL given E and h, while thrust

equals drag can then be 'solved'for n. With these explicit conditions

the part of the HamiltonianlabelledH2 is guaranteedto be zero. Hence,
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the min-H operation amounts to selecting n, E, h and x to minimize HI,

subject to the inequality constraints, Bi _ O. Observe that with _3 = 0

none of the state variables x, y or W appear on the right-hand side of a

state equation so that the corresponding co-states _x' _y and _ are
constant in time. --

Proceeding with the min-H operation one expresses the unknown co-

states _x and _y in polar form as

_x = A cosA (5-15)

(a > O)

Xy = A sinA (5-17)

and rewrites the Hamiltonian as

HI = V A cos(x - A) + _Q (5-17)

It is clear that the appropriate choice is A = (x - _), where x is

selected so that the rectilinear path goes through the specified points

(xo, yo ) and (xf, yf).

The terminal transversality condition requires (Refs. 39 and 48)

that

Hl(tf) = -"I (5-18)

X_(tf) : "2 (5-19)

from which one finds

A : ["I + P2 e(tf)] /V(tf) (5-20)

so that

HI = - 1_I + _2 Q(tf)] /V(tf)} V + _2Q (5-21)

One now defines constants xF (fuel) and xR (range) by
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XF = P2 (5-22)

XR : ["l + P2 Q(tf)]'/V(tf) (5-23)

and observesthat the minLH operationscan be interpretedas seekinga

point (givenby E, h and n) that minimizesthe quantity

J = XFQ - XR V (5-24)

subjectto level-flightequilibriumconstraintsand the inequalitycon-

straints Bi _0. This is a classicalcruise-dashproblemand will be

examined in some detail. The approachtaken here will be to solve this

problem for specifiedXF and XR and compute the corresponding"l and _2
from

_l = XRV - XFQ = - Jmin (5-25)

P2 = XF (5-26)

SECTION5.3

CRUISE-DASHANALYSIS

The problem consideredhere is that of findinga point on or within

the flight envelope,characterizedby a speed V, an altitude h and a

throttle-settingn, that minimizesthe quantity

J = XFQ(n, h, V) - XRV (5-27)

subjectto the level-flightequilibriumconstraintsand inequalityconstraints

r _i _ O.

The parametersXF and XR are specifiedconstantsand their relation

to the parameters"l and "2 in the dynamic performanceindex has been
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describedabove. Recapitulatingsome of the previous discussion,one

notes that for a given (h,V) pair the equation L = W is to be solved

for CL. One then evaluatesthe correspondingdrag D(h, V, CL) and then

'solves'for the throttle-settingn such that T(n, h, V) equals the

determinedvalue for drag. If the throttle-settingthat emerges is not

admissible (e.g. drag greater than maximumavailablethrust),then one

might set J equal to positive infinityand in this way interpretJ to

be a function of h and V.

To proceedwith the analysis,note that the second term in the sum for

J dependsonly on V and since

minh,vJ(V,h)= min[m_nv J(V, h)]

one is led to considerminimizing the fuel-flowover altitude for fixed V.

Accordingly,define

Q*(V) = min [Q(n, h, V)] (5-28)h

and

J*(V) = XFQ*(V) - XRV (5-29)

so that the cruise problemcan be restatedas seekingthe speed V that

minimizesthe combination(_FQ*(V)- _RV). A method of characterizing

solutionsto this problem can be easily explained in geometricalterms

set in the (Q - V) plane. For fixed (non-negative)_F and _R' lines

of constant (_FQ - _RV) are as shown in Fig. 5.1 with values increasing

as one moves upward (increasingQ) or to the left (decreasingV). If

one superposesa graph of Q*(V), then it is seen that an optimal (V, Q)

is a point of contact of the Q*(V) graph and that member of the constant
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(_FQ - _RV) family that separatesthe part of the plane containingthe

graph from the part of the plane containingno points on the graph. In

optimizationtheory (Ref. 62) this is called a supportin_hyperplane- in

this case it is a line. From Fig. 5.1 it is also 'clear'that, if Q*(V)

is smooth,then

(dQ*_

dV IVo = (XR I XF) (5-30)

The necessityof this condition,under the smoothnessassumptionon Q*(V)

can be establishedfrom the usual requirementthat the first derivative

of J*(V) must vanish at a minimizingV.

SECTION5.4

COMPUTATIONSAND RESULTS

A computationalstudy of cruise-dashoptimizationwas carriedout,

using data for a twin-enginedhigh-performancemilitaryaircraft. The

aerodynamicand propulsivemodellingis presentedin Section 5.5. Only

the aerodynamiclimit (definedby CL(M) was consideredin this study, and

the terrain limit was sea-level.

The Q*(V) graphs obtained from a one-dimensionalminimizationover

altitudeare presentedin Figs. 5.2 and 5.3. Detailsof the numerical

proceduresused to calculateQ*(V) are included in Section 5.6. Figs.

5.4 and 5.5 includethe graphs of optimalaltitude and throttle-setting

that emerge from the min-Q operationover altitude. As describedin

Section5.5, n equals zero correspondsto zero thrust, n equals unity

to military thrust and n equals two impliesfull afterburningthrust.

The most interestingfeatures of the Q*(V) graph are its regionsof
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nonconvexity. These imply that the tangency condition (5-30) is not

sufficient for optimality. In other words, a tangent line need not be a

'supporting' line (see Fig. 5.6 which shows three candidates marked X, Y

and Z).

We now consider the problem of characterizing the minimizing V in

terms of the parameter _FR(= _F/_R). Cruise-dash points are computed

for values of _FR ranging form 0 ft/Ib to 106 ft/Ib, thus covering the

entire spectrum from the high-speed point to the minimum-fuel-flow point

respectively (Fig. 5.7). It is observed that the locus of optimal oper-

ating points has several discontinuities, and that the jumps in velocities

are closely related to the nonconvexities in the Q*(V) graph. As an

illustration, consider the behavior of the cruise-dash locus, starting

at the fixed-range minimum-fuel point (h = 46,510 ft, V = 775 fps) with

_FR = I000 ft/Ib. As _FR decreases, the emphasis on velocity (range) in

the performance index increases while the importance of fuel-flow decreases.

Fig 5.8 presents the level-flight envelope along with loci of constant

fuel-flow for unaccelerated level-flight. From these contours one might

expect that as _FR decreases, the cruise-dash altitude and velocity would

both increase. The cruise-dash locus does in fact follow this trend, with

velocity and altitude both increasing until _FR reaches 319.36 ft/Ib.

At this value, the cruise-dash point abruptly jumps from (h = 48,535 ft,

V = 864 fps) to (h = 67,179 ft, V = 1075 fps). The explanation for this

behavior can be found in Fig. 5.6 which shows a region of the Q*(V) curve.

It can be seen that Q*(V) exhibits nonconvex behavior in the range 864

fps < V < 1075 fps, so that a 'supporting' line will not touch the curve

for any velocity in this region. Therefore, there can be no cruise-dash
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points in this velocity range, thus explaining the gap in the cruise-dash

locus.

The Q*(V) graph (Figs. 5.4 and 5.5) has several regions of noncon-

vexity and thus the locus of optimal operating points characterized by

_FR has several gaps (see Fig. 5.7). Note that there is a one-to-one

correspondence between nonconvexities in the (Q,V) plane and discon-

tinuities of the cruise-dash locus in the (h, V) plane, both labelled

A through E in Figs. 5.2, 5.3 and 5.7.

There is another interesting consequence of the nonconvexity of the

function Q*(V). Consider the question of minimum-fuel transport for

the kinematic model (_I = _2 = O) with specified average speed. The

classical-cruise exercise is to seek the altitude h° and throttle-setting

no that minimizes Q(n, h, Vo) with V° specified. Note that this will

produce fuel-flow Q*(Vo). If V° is in a region of nonconvexity of Q*(V)

then one could do better by flying at speeds V1 and V2 (see Fig. 5.9) with

time at each apportioned so as to average Vo. Fig. 5.10 shows the fuel

savings as a function of velocity.

One could even achieve constant average speed Vo by 'chattering'

(Ref. 63) between V1 and V2. (Note that for the reduced model the graph

of the function Q*(V) traces out the boundary of the hodograph figure).

The simplest and most frequently occuring type of time-shared operation

would seem to feature a single transition between two (h, V) points. The

order of the sequence is ambiguous in zeroth-order asymptotic approxi-

mation. More complex time'sharing (possible 'chattering') may correspond

to oscillatory cruise-dash in optimal flight with a point-mass vehicle

model (Refs. 64 and 65).
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SECTION5.5

MODELLING

5.5.1 Atmosphere

Air density (slugs/ft 3) and sonic velocity (ft/sec) are supplied

in tabular form as functions of altitude (feet). The sonic velocity

and the natural logarithm of the air density are interpolated as cubic-

spline functions of altitude (Ref. 44). The acceleration due to gravity

(ft/sec 2) is a specified constant.

5.5.2 Aerodynamics

The aircraft drag coefficient CD is computed as a parabolic function

of lift coefficient CL with polar parameters CDo and CDcL2, both of which
are supplied in tabular form as functions of Mach number. The maximum

lift coefficient CL is also specified as a function of Mach number.

CDo, CDcL2, and CL are interpolated as cubic-spllne functions of Mach

number. This is shown for CDoand CDCL2in Figs. 5.11 - 5.12. Theair-

craft weight (Ibs) and aerodynamic reference area (ft 2) are specified

constants.

5.5.3 Propulsion

Two sets of thrust (Ibs) and fuel-flow (Ibs/hr) tables are available

as functions of Mach number and altitude (feet). One set corresponds

to military (maximum non-afterburning) operation, and the other represents

operation with full afterburner. The afterburning thrust and fuel-flow

data are presented in Figs. 5.13 - 5.14. Interpolation of these tables
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between (h, M) points is done by usingcubic-spline lattices (Ref. 44).

Interpolationbetweenmilitary and afterburningis linear as is

partial-throttlemilitary. One introducesa throttle parameter,n, such

that operationat military power correspondsto throttle-settingn = l,

and throttle-settingn = 2 gives full afterburneroperation, n = 0 is

a zero-thrustsetting. Thrust and fuel-flowvalues (fora given altitude

and Mach number) are known only for three throttle-settings,n = O, l, 2.

A linear variationin throttle is assumed betweenn = O, l and n = l, 2,

hence given a value of thrust,the throttle-settingcan be computed by

linear interpolation. Note that this is not truly an assumption;indeed

it only serves to define the throttle parametern. However,one now assumes

that fuel-flowalso varies in a sectionally-linearway with n. Thus, the

specific fuel consumptionis independentof throttle for idle-to-military

settingsand the incrementalspecificfuel consumptionin afterburning

operationis also independentof throttle. Given that we only have

propulsivedata at three throttle-settings,a sectionally-linearmodel

is reasonable. However,the resultsobtainedmay well be influencedby

this type of modelling. Finally,note that the 'data'at n = 0 is taken

as T = Q = O.

SECTION5.6

COMPUTATIONOF Q*(V)

By definition,

Q*(V) = min. [Q(n, h, V)]h
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Given a (h, V) pair, the thrust T and throttle-setting n can be com-

puted by making use of L = W and T = D as described in the section on

Cruise-Dash Analysis. Since the values of fuel-flow are known for three

throttle-settings (n = O, I, 2), one can evaluate Q(n, h, V) by linear

interpolation.

Q*(Vo) is found by performing a one-dimensional search over altitude

for a given velocity Vo. A coarse grid is set up ranging from 0 to

80,000 feet with increments of 5000 feet. The fuel-flow Q(n, h, Vo)

is evaluated at each altitude grid point (with fixed velocity Vo). The

minimizing altitude (hl) is then picked out by direct comparison of fuel-

flow values. Another search is carried out over a range of I0,000

feet centered at altitude hI, with a grid size of 500 feet. A refined

estimate of the minimizing altitude (h2) is obtained by comparing values

of fuel-flow. Finally, a golden-section search is performed over the

1,000 ft interval centered at h2, with an accuracy of 0.I foot. It was

observed from plots of Q(n, h, Vo) vs h that Q(n, h, Vo) satisfies the

unimodality requirement near the minimum; hence the golden-section search

is successful.

The minimizing altitude obtained from the golden-section search is

ho and the corresponding throttle-setting is no . Thus, one finds that

Q*(Vo) = min [Q(n, h, go)]h

= Q(no, ho, Vo) -

In this manner, Q*(V) can be computed for any given velocity.
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SECTION5.7

_" CONCLUSIONS

The classical problem of selecting an altitude, velocity and throttle-

setting to minimize a linear combination of fuel-flow and (negative) range-

rate has been considered as an 'outer' solution of a dynamic path-

optimization problem, when Newtonian dynamics are modelled as 'fast'.

This classical cruise-dash problem has a family of solutions where each

member depends on the relative emphasis placed on time and fuel. Compu-

tations performed for a particular high-performance aircraft show that

the locus of optimal operating points has several breaks, each corres-

ponding to a nonconvexity in the Q*(V) curve. Consequently, certain

velocity regions are non-optimal for cruise-dash operation.

If a time constraint forces operation at an average velocity in

such a region, time-shared operation is more fuel-efficient than classi-

cal (steady-state) cruise. This behavior may have an interpretation as

a simple sequence of operation at two (h, V) points or, possibly, as

'chattering', corresponding to oscillatory cruise-dash in point-mass

modelling.
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Fig. 5,6 Candidate minima of J = (1FQ - XRV)
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SECTIONA-I

PREEACE

Energy modelling of aircraft flight had its origin in the 1944

Messerschmitt A. G. report listed as Ref. 22; it was perhaps the

most important analytical development in flight performance to come

out of WWII. The object of the present paper is to review the Kaiser

report in the context of later developments and to attempt to recreate

the main results, especially the intriguing "distance-climb" tra-

jectories.

Reference 22 is Part 1 of a report on climb problems; it deals

with the minimum-time-to-climb case. Parts 2, 3 and 4, which were to

be concerned with other climb problems, were never issued. Nontheless

some "distance-climb" results found their way into a figure of Part 1

and, although analysis is missing, it is interesting to speculate on

these data in the light of optimal climb-dash results obtained by

current methods.

In the following, Kaiser's "resultant-height" concept is reviewed

along with his calculations for the Me. 262 and some results of an at-

tempt to recreate them presented. It should be noted that a variational

formulation of a related problem (minimum-fuel) had been given a year

earlier by Alexander Lippisch, using the same physical modelling approxi-

mation, but no solution had been sought (Ref. 66).
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SECTIONA.2

L

QUASI-STEADYCLIMB ANALYSlSANDCORRECTIONS

With a point-mass-model and symmetric flight assumed,the
L

governing equations of motion are

h = V siny (A-I)

V : g [(T-D)/W - siny] (A-2)

y = (glV)(L/W- cosy) (A-3)

Here, geometricaltitude,h, velocity,V, and flight-pathangle, y,

are the conventionalstate variables,g is the accelerationof gravity,

T thrust, D drag, L lift, and W weight. The left-handmembers of the

equationsare the derivativeswith respectto time, time differentiation

being denoted by a superscribeddot as usual. The symbolsadoptedare

those of the "modern"flight-performanceliterature.

Traditionalquasi-steadyapproach to climb performance,specifically

maximum rate-of-climb,focusesentirelyon potentialenergy increase.

The so-calledspecificexcess power Ps = V(T-D)/W is maximizedat each

altitude by choice of airspeed V. That is, for a given altitude,a

velocity is chosen to maximize Ps' without regard to kineticenergy

changes. For low-performanceaircraft this is a good approximation,

since the change in kineticenergy is generallysmall. For high-

performancejet aircraft,however,the velocity change must be accounted

for; even for purely subsonicflight the effect is appreciable. Note

that the analysis produces a climb schedule in the form V(h): i.e.
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at each altitude there is a best velocity.

The technology of the WWII period included various correction

factors to adjust the steady-state results to account for acceleration

effects. Since V changes with time, we have that

V = (dV/dh) h = (dV/dh) V siny (A-4)

Combining equations (A-4) and (A-2),

(T-D) - W siny [l+(V/g)dV/dh] = 0 (A-5)

Rearranging the terms equation (A-5) becomes,

siny = [(T-D)/W]/[l+(V/g)dV/dh] (A-6)

After multiplying both sides of equation (A-6) by V, one may

identify the right-hand side of equation (A-I) with the right-hand side

of equation (A-6): therefore, the "corrected" rate of climb becomes,

h = V siny = [(T-D)V/W]/[l+(V/g)dV/dh] (A-7)

Hence I/[l+(V/g)dV/dh] is the correction factor to adjust for the

change in speed. It is important to note that whereas the analysis

provides a correction due to velocity change the optimization was done

ignoring the change.

SECTIONA-3

RESULTANTHEIGHTAND ENERGYMODELLING

Kaiser presented a then-new concept of "Gesamth_he" (resultant

height) subsequently called "energy height" and "specific energy"

(Refs. 23 and 24). This is the altitude where "the potential energy of
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the aircraftwould be equal to the sum of its potentialand kinetic

energy at height h and speed V" (Ref. 22). At a given energy height

the potentialand kineticenergiesare regarded as easily and rapidly

interchangeablein this approximation.
£

It is readilyshown that the resultant-heightvariablehres

= h + V2/2g satisfiesthe differentialequation

hres = V(T-D)/W (A-8)

which may be thought of as replacingboth equations(A-l) and (A-2).

By small-yassumption (cosy - l) and deletion of the # term in (A-3)

the drag is approximatedas the drag for level flight,L = W, and is

a functionof h and V only, D(h,V). Note that the right-handside of

(A-8) is the specificexcess power, Ps" In modern terminologyhres is

the specificenergy rate; Kaiser used the symbol wu (unaccelerated

climb rate).

Kaiser's schemewas to "reacha certain height and end speed as

quicklyas possible" (Ref. 22). The velocity-altitudepath is chosen so

as to maximize the time derivativeof hres at each value of hres.

Altitude-speedtransitionsalong constant-hres curves are imagined as

occurring instantly,if necessary,and without dissipationof energy.

Thus, hres is "slow" and y and h at constanthres are "fast", in the

languageof singular perturbations(Refs.25, 41, 43).

Speeds for optimumclimb were obtained graphicallyin Ref. 22.

This was done by first plottingcontoursof equal specificexcess power

in a V-h chart. Such a chart with superimposedconstant-hres contours

is sometimes called a "Kaiser diagram" (Ref. 67). Optimum climb speeds _
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then lie at the points where "the tangents to the curves of resultant

height and to the wu line have the same direction" (Ref. 22). Kaiser's

representation of these results for the Me. 262 are reproduced in Fig.

A.I, with certain features omitted for clarity. A cubic-spline-lattice

• representation, with coefficients selected to fit Kaiser's data, was

used to generate a family of curves to approximate Kaiser's P curves.s

The Ps curves generated are shown in Fig. A.l against a background of

constant hres contours. Also shown is Kaiser's approximation to the

best climb schedule comprising two straight-line segments.

In the present re-creation of Kaiser's calculations the Ps curves

in spline-lattice approximation do not match Kaiser's data exactly but

are reasonably close. The climb trajectory also disagrees slightly since

it was obtained from the same spline-lattice fit.

Kaiser's climb schedule for the Me. 262 "condensed for display

in the cockpit" (Ref. 22), was as follows,

Altitude True Airspeed

(km) (km/hr)

2 500

6 550

I0 650

The airspeeds given are 25 - 50 km/hr faster than for quasi-steady

maximum-rate-of-climb scheduling.

Note that flight along the optimum-speed curve requires a slightly

longer time to reach a desired height than does climb with classical

maximum-rate-of-climb. However, the additional speed realized can be
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° convertedinto height.

• SECTIONA.4

ENERGY INTERCHANGE

• The essenceof energy approximationis order reduction. The

order of the original system,Eqs. (A-l) - (A-3),is reducedfrom three

to one for the "slow"motion or "outer"solution;the state variable is

hres, "resultantheight"or "energyheight"or "specificenergy." The

"fast"motion of h, y transitionat constant hres is a "boundarylayer."

The motions are not patchedtogether but spliced in a Vasil_va composite

(Ref. 25). That Kaiser well understoodthe concept of fast and slow

motions taking place concurrentlyin a compositeapproximationis clear

from the followingpassagefrom Ref. 22: "For example after reaching•

a definite resultantheight the speed is to be increasedby pushing

the nose down. Now the pilot begins to do this earlier by the length

of time required to bring it into effect. During this time the air-

craft further increasesits resultantheightwithout variationwith wu.

Here the paradox is presentedthat the resultantheight increasesin

spite of the downwardmotion of the aircraft. The desiredresultant

height is thus reachedat the same moment as it would be without

increasingthe speed."
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SECTIONA.5

CLIMB-DASH

Kaiserwas also concernedwith the problemof optimumrange.

For a given resultantheight one might find the value of altitudewhich

maximizes the weighed sum Ps(h,V)+ XxV, where Xx is an arbitrary

constant;this procedureproducesa family of trajectorieswith x

as a parameter. If _x = O, the minimum-time-to-climbprofile is

generated. When Xx > 0 one begins to place some "weight"on the

velocity factor, hence range-rateis now receivingsome emphasis.

Kaiser'sanalysisof optimum range was to be presentedin Part 2,

which never appeared. He did, however,illustratehis range findings

on the h-V plot presentedin Part l (Fig. A.2). It is conjectured

that Kaisermay have used the weighing schemejust stated to find his

"distanceclimbs" by placingvarying importanceon the velocityterm.

Therefore,the greater the range desired,the larger _x used. Using

the data produced by the spline-latticerepresentationof Ps and

solvingthe equationsnumericallywith variousconstant _ values,x

curves were generated (Fig.A.3) and comparedto Kaiser's. The results

obtained seem to agree with our conjectureas to Kaiser'smethod of

optimum range calculations.

If a family of optimaltime-energy-rangesolutionsis sought in

energy approximationfrom the Euler system (Ref. 25) with resultant

height (specificenergy)and range on the same time scale, the curves

_. given in Fig. A.4 are obtained. These are seen to bear a resemblance
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to the constant-weighing-factor curves of Fig. A.3 and to Kaiser's

family of Fig. A.2. The modern formulation requires that altitude

be chosen so as to

h°pt = arg. max [_EPS(h,V) + _RV] (A-9)h

at fixed hre s, The terms _E and _R are the co-states of optimal

control theory and in general vary along the trajectory. With _R = 0

the time-varying nature of _E does not affect the maximization operation

in equation (A-9) (as long as _E > 0). However, when _R > O, the

time-varying nature of _E effectively produces a variable weight

[_X = _R/_E] in Kaiser's formulation.

SECTIONA.6

CONCLUSIONS

Kaiser's resultant-height method was the forerunner of the

singular-perturbation approach to aircraft flight performance. The

computational results and procedures are, accordingly, of more than

historical interest in the context of optimal-flight methodology.

POSTSCRIPT

Recently MBBhas kindly assisted the writers in making contact

with Fritz Kaiser. Herr Kaiser explains that his "Gesamth_he"

idea was suggested by kinetic-energy corrections to climb measurements

developed earlier (Ref. 68). With regard to the Lippisch work: "I

hear from you for the first time that he (Lippisch) too was occupied with
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this problem. It is true we worked in the same firm but within different

departments,which were shieldedagainsteach other by highly secret

classification." In connectionwith the projectedParts 2, 3 and 4

of his report, he explains that "I did not carry out these works as my

first report met no interestat all." About the distance-climbcalcu-

lations: "In the meantime,in February 1944, the great air raid to

Augsburg and the factoriestook place, which among others, destroyedmy

working papers and which forced the flight-testdepartmentto move to

Lager Lechfeld. There too, I had to change four times the destroyed

offices. The parametersdrawn in sheet 8 for the distance climbing

are the result of (destroyed)preparatoryworks. However, I cannot

explainthem any more."

4
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SECTIONB.I

PREFACE

In optimal-control problems featuring scalar control appearing

linearly in the system differential equations, singular subarcs can

sometimes arise. Along singular subarcs which are minimizing, the

Generalized Legendre-Clebsch necessary condition should hold (Refs.

69 and 70). A class of such optimal-control problems can be recast

as identically non-regular problems in the classical Calculus of Vari-

ations if the dimension is low. Specifically, this transformation

appears feasible if there are at most two-non-ignorable state variables

and one control variable. In general, the procedure involves a change

in the independent variable under appropriate smoothness and monotonicity

assumptions. (The phrase "Classical Calculus of Variations" employed here

refers to unconstrained problems, i.e., not to Lagrange-Mayer-Bolza

problems.)

For this class of problems, Mancill (Ref. 58) has obtained conditions

for a minimizing singular arc. In this research, Mancill made use of

Green's theorem on line integrals to establish conditions for a strong

relative minimum. Miele (Refs. 57, 71) used the Green's theorem ap-

proach for problems with control bounds, extended the technique to handle

isoperimetric constraints and carried out applications to several flight

problems. Goh (Ref. 72) examined the singular Bolza problem and noted

the connection between Miele's work and the identically non-regular
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problem in the Calculus of Variations.

This appendix deals with an evaluation of Mancill's 1950 work and

its relation to the Generalized Legendre-Clebsch necessary condition.

A critique on the nature of transversality conditions for this class

of problems is presented. Three illustrative examples are also given.

SECTIONB.2

IDENTICALLYNON-REGULARPROBLEM

The identically non-regular problem with fixed endpoints in the

Calculus of Variations (Refs. 58 and 73) is the minimization of an

integral of the form

J = [P(t,x) + Q(t,x)x]dt (B-I)

t 1

with

x(t I) : x I and x(t2) = x2 (B-2)

Note that

[P(t,x) + Q(t,x)X]xx = 0 (B-3)

It is known that the Euler's equation for this problem is either

an identity or a finite equation (Refs. 73, 74 and 75). If it is an

identity, the integral is independent of the path joining two fixed • %

points and no proper minimum exists. On the other hand, if it is a

finite equation, the Euler's equation is satisfied only along certain

paths which in general do not pass through the specified end points.
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These functionalsare sometimescalled"degenerate" because

, the Euler equation for such functionalsis not a differentialequation,

but a finite equationwithout any derivativesof the unknownfunction

(Ref. 76).

Two theorems by Mancill (Ref. 58) give necessaryand sufficient

conditionsfor a strong local minimum in these problems. These are

presentedin the following.

Theorem I. If El2 is of class D' and minimizesthe integralJ in the

class of admissiblecurves joining l and 2, where P(t,x) and Q(t,x)

are of class C2n in a closed region R of(x,t) space, then

_2n-Ip/_x2n-I = _2n-IQ/_t_x2n-2 '

_2np/_x2n _> _2nQ/_t_x2n-l, (I)

if _kp/Bxk = BkQ/BtBxk-l, k = 1,2,3,..........2n-2, along arcs

interior to R, including all isolated points in commonwith the

boundary of R:

_rp/@xr_>_rQ/_t_xr-I (IB)

if Bkp/Bxk= @kQ/BtBxk-l,k = 1,2,3,....r-l,along arcs in commonwith

the boundaryof R.

Let (I') and (I_) representconditions (1) and (IB) respectively

with the inequalities_ replacedby the strict inequality>. This is

a familiarnotation in the classicalCalculusof Variationsand it will

be employed in this work.

The first part of (1) with n = l, is the Euler'snecessarycondition

for this problem. The inequalityin (1) with n = l, is derivedfrom the
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second variation. For n > 1 the conditions(I) are obtained from

higher variations.

Theorem 2. If P(t,x) and Q(t,x) are of class C2n in R and the conditions

(I') and (I_) are satisfiedalong an admissiblecurve El2 joining l and 2,

then El2 furnishesa strong proper relativeminimumfor the integral

J in the class of admissiblecurves joining l and 2.

It is impliedin Theorem2 that the Euler equation is not an identity.

This Theorem is proved using Green's theoremon line integrals. Mancill

has given two additionaltheoremson the necessaryand sufficient

conditionsfor the identicallynon-regularproblemwith variableend

points. However,the interpretationof these in the light of modern

optimal-controltheory indicatestheir inapplicabilityowing to the

violation of the smoothnessassumptionessentialto the results in

Mancill'swork. A detaileddiscussionof this is presentedin Section B.6.

At this point, it is perhaps interestingto compare the results

obtained by Mancillwith those of Miele (Refs.57, 71). The first part of

condition (I) in Theorem l with n = l is termed the "fundamentalfunction"

m(t,x) in Miele'swork. The inequalityin (I) appearsas a specification

on the directionof traverse along the extremal. Similarly,the

condition (IB) of Mancillalso appears in Miele'swork as a specification

on the directionof traverse along the boundaryof the admissible

region,applicablewhenever the arcs interiorto the admissibleregion
i"

are non-optimal.
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SECTIONB.3

' THE PROBLEMIN AN OPTIMAL-CONTROLFORMAT

With a short development it will be shown that with n = I, the
?

inequality in (I) is the Generalized Legendre-Clebsch necessary condition

for q : I.

Consider the optimal control problem

Min to [P(t,x) + Q(t,x)u]dt (B-4)

subject to the differential constraint _ : u. It is apparent that this

problem is equivalent to the identically non-regular problem in the

Calculus of Variations. Note that the control u is unbounded.

To proceed via the "modern" approach one defines the variational

Hamiltonian

H(_,x,t,u) : P(t,x) + Q(t,x)u + _u (B-5)

and forms the adjoint equation

: - Px - Qx u (B-6)

From the expression (B-5) for H, one has that along a singular

subarc

Hu = Q(t,x(t)) + _(t) = 0 (B-l)

Differentiating this with respect to time, substituting _ = u and

using (B-6) for _, one finds
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_--t-[Hu] Qt(t, X) Px(t,x) (B-8)

Differentiatingwith respectto time again,while using A = u, leads to

d2 [Hu]
dt2 = Qtt - Pxt + (Qtx - Pxx)u (B-9) J

Hence the GeneralizedLegendre-Clebschnecessaryconditionfor first-

order singulararc is

a ! d2[Hu] }B-u d_ = Qtx - Pxx <-0 (B-lO)

that is

Pxx Qtx (B-ll)

The inequality (B-ll)is the same as that in condition (1) of Ref. 58.

One notes that the inequality(I) of Mancill for n > l is not

equivalentto the GeneralizedLegendre-Clebschnecessaryconditionbut

is somethingmore general. (See ExampleIb to follow.)

SECTIONB.4

TRANSFORMATIONTO CANONICALFORM

To investigatethe situationsin which specifiedboundary

conditionsare off the path defined by the conditions (1), and the

variable-endpointproblem,a transformationapproachdiscussed in Ref.

77 is next employed. The identicallynon-regularproblem is first brought

into the Mayer format:

y = P(t,x) + Q(t,x)u (B-12)

x = u (B-13)
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with tl,t2, x(tI) = Xl,X(t2)= x2 specified. A minimum of y(t2) is

sought with Y(tl) = O.
i

Next, a transformationof state variableswill be performedso

that the state system has a specialform. The new state variablesare

z and x and the system is to have the controlvariableu appearingin

only one of the state equations,the one for x.

The system is

z = P(t,x) + BR(t,x) (B-14)@t

x = u (B-15)

and the choice of z leadingto it is

z = y + R (t,x) (B-16)

where

R(t,x) = - Q(t,_)dJ (B-17)

(Refs. 69, 77). The end conditionsare tl, t2, x(tl) = Xl, x(t2) = x2

specifiedas before• The initialvalue of z is z(tl) = R(tl, Xl) and a

minimum of z(t2) is sought.

Since there are no bounds on the control u, it can behave impulsively

and x(t) can jump. If the equation (B-15) is discardedand a solution

sought in the class of functionsx(t) piecewise-continuous,x becomes

control-like(Refs. 69, 77). At points tI < t < t2, x minimizesthe

right member of equation (B-14).

BR
x : Arg min [P(t,x)+_-_ (t,x)] (B-18)

x

possiblyexhibitingjump discontinuitiesin the interiorof the interval
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dependingon the nature of the time dependenceof equation(B-14). The

variablex will generallyjump at the initialand final times to satisfy )

the end conditionsunless the value emerging from expression (B-18)

happens fortuitouslyto satisfythem.
J

The situationwith endpointfreedom is interesting. Considerfor

example, tI and t2 fixed as before, but x(t2) unspecified. To minimize

Y(t2),x should jump at the final time t2 to the value

x(t2) = Arg max R(t2,x) (B-19)
x

This seems to be the nearest thing to a transversalityconditionthat

one can have with x control-like.

SECTIONB.5

ILLUSTRATIVEEXAMPLES

To conveyan impressionof Mancill'swork,threeexamplesare given

in the following.

(1) Two elementaryexaml_

(a)
tf

r; x2 dt, subjectto _ = uMin

t
0

x(to) = xo and x(tf) = xf specified.

Since there are no bounds on the control,the differential ",

constraintis inactive. Hence, the problem in classicalCalculusof

Variationsformat is
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, Min x2 dt (B-20)
to

With the identificationof

P(t,x)- x2 (B-21)

Q(t,x) - 0 _ (B-22)

The necessaryconditionsof Ref. 58 become,

2x = 0 (B-23)

and

2 .>_0 (B-24)

The sufficientcondition

2 > 0 (B,25)

is met in the strengthenedform along the arc x = 0 and hence, the

trajectoryx = 0 affordsa strong relativeminimum. The result (B-25)

was obtained in Ref. 69 via the GeneralizedLegendre-Clebschnecessary

condition. If the initialand final conditionsare off the x = 0 path,

jumps in x are requiredat the end points. Such motions have no effect

on the performanceindex.

The next example is chosen to illustratethe necessaryconditions

of Mancill for n > I.

(b) rtf

J x4 dt, subjectto _ = uMin

: t
o
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The conditionsx(to) = xo and x(tf) = xf specified. Since there

are no bounds on the control variable,the problem in the Calculus

of Variationsformat is

tf

Min f x4 dt (B-26) J

to

The necessaryconditionsfor a minimumare

4x3 = 0 (B-27)

Hence x = 0 is the extremal. Further,

12x2 = 0 (B-28)

24x = 0 (B-29)

24 > 0 (B-30)

Note that the sufficientcondition (I') in Theorem I, (B-30)with

strengthenedinequality,is met for n = 4. Just as in the previous

example,jumps in x must be permittedat the endpointsif the specified

conditionsare off the x = 0 path.

(2) Minimimum-timeaircraft climb

FollowingMiele (Ref. 57), a model of aircraft in symmetricflight

under the assumptionsof constantweight and thrust,T, and drag D,

functionsof altitude,h, and airspeed,V, only, is:

V = g[ I (T-D)/W)_-siny] (B-31)

h = V siny (B-32)
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.,_'.

---m
) . ..

- :. Differential equations for range rate .andfuel-flow rate, have been

, " _ropped from the system, since they are ignorable in this problem. The

optimal-control problem is the minimization of time required to fly from

an initial (V,h) pair to a final (V,h) pair, viz.
z

• : (Vf,hf)

,,Min f dt (B-33)

' (vi,h i)

'Changing the independent variable from time to altitude,

• .iV, _ dV_ g(T-D) _
dh W V siny V (B-34)

(Vf,hf)
dh

:Min V siny

' (Vi,h i ) (B-35)

Substitutingnext for siny in (B-35)from (B-34),the problem in

the classicalCalculus-of-Variationsformat is

Min (VThi)
V-(-T----_+ dh (B-36)

(Vi,hi)

In this development,the monotonicityof the altitude variable has

been tacitlyassumed. If desired, siny may be constrainedby defining

an admissibleregion in the V-h space as suggestedin Ref. 71, however,

this falls outside the Mancillmodel. Employingconditions (1) in

Theorem I, the necessary conditions for a minimum for arcs interior to

the admissible region, are
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_-V " = _ (B-37)

)
B2 B2 W

The expressions(B-37)and (B-38)may be put in the followingform J

32 [V(T-D)] I = 0 (B-39)

@h IE = Constant

@2 [V(T-D)] _ 0

@h2 E = Constant (B-40)

The necessaryconditionfor a strong relativeminimum, then, is

D2 [V(T-D)] I _<0

_h2 IE = Constant (B-41)

This result was obtained in Ref, 69 using the GeneralizedLegendre-

Clebschnecessarycondition. The expression (B-39)correspondsto

stationarypoints of excess power V(T-D) along contours of constant

energy E _ h + V2/2g. Inequality(B-41)impliesthat the stationarypoints

of excess power along constant-energycontoursmust be maxima, a result in

accord with engineeringintuition.

If the endpointsare off the path defined by (B-39),jumpsin air-

speed and altitudemust be permittedto meet the boundarycondition. With

boundson control,on the other hand, operationat one of the control

limits is indicated.

T
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SECTION B.6

' SMOOTHNESSDIFFICULTIESAND THEIR IMPACT

In Ref. 58, and in classicalCalculus-of-Variationstreatments
J

generally (e.g. Refs. 73-75),the functionx(t), which appearsalong

with its derivative,R(t), as an argumentof the integrand,is assumed

to possessa first derivativewhich is at least piecewisecontinuous.

The various theoremsof Ref. 58 do not apply to discontinuoussolutions

of the type examined in the precedingsections. In the classicalsetting

one would say that no minimum exists in the class of admissiblefunctions,

but only a lower bound. Indeedthe classicaltreatment (Refs. 73-75) focuses

entirelyon the degeneratecase in which the integralis independentof

the path.

One is faced with the choice betweenextendingthe theory to admissible

x(t) piecewisecontinuous,or the introductionof bounds on the control

u(t). UnfortunatelyMancill did neitherand producedan array of results

of seeminglyenormouspower (e.g., sufficiencyby strengtheninginequalities),

which are in fact of extremelylimitedapplicabilitybecauseof their

smoothnesshypotheses. An unwelcomecomplicationof the Mancill theory

is the incorporationof state-inequalityconstraints,a relic of his

earlierwork on this specialtype of problem (Ref. 79 , which does not

alleviatethe smoothnessdifficulties.

- Treatmentof variationalproblemswith x(t) piecewisecontinuous

only has been given by V. F. Krotov (Ref. 7_. (See also Petrov,Ref.7G.)

Bounded-controlproblemsapproachedby Green's Theoremhave been studied
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by Miele (Refs.57, 71).

1

SECTION B.7

CONCLUDINGREMARKS
J

Mancill'stwo Theorems given in the presentwork are of interest

and seem to have been ahead of their time. For the narrow class of

problemsconsideredby Mancill, the inequality(1) with n = l is

equivalentto the generalizedLegendre-Clebschcondition. Perhaps

equally importantwas Mancill'sintroductionof the Green'sTheorem

device for the study of problemsof small dimension.
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