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In this paper we generalise the main result of a recent work by J. L. Cardy and the present
authors concerning the bi-partite entanglement entropy between a connected region and its
complement. There the expression of the leading order correction to saturation in the large
distance regime was obtained for integrable quantum field theories possessing diagonal scattering
matrices. It was observed to depend only on the mass spectrum of the model and not on the
specific structure of the diagonal scattering matrix. Here we extend that result to integrable
models with backscattering (i.e. with non-diagonal scattering matrices). We use again the replica
method, which connects the entanglement entropy to partition functions on Riemann surfaces
with two branch points. Our main conclusion is that the mentioned infrared correction takes
exactly the same form for theories with and without backscattering. In order to give further
support to this result, we provide a detailed analysis in the sine-Gordon model in the coupling
regime in which no bound states (breathers) occur. As a consequence, we obtain the leading
correction to the sine-Gordon partition function on a Riemann surface in the large distance
regime. Observations are made concerning the limit of large number of sheets.
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1 Introduction

A quantity of current interest in quantum models with many local degrees of freedom is the bi-
partite entanglement entropy [1]. It is a measure of quantum entanglement between the degrees
of freedom of two regions, A and its complement, in the ground state |gs〉 of the model. Other
measures of entanglement also exist, see e.g. [1]-[5]. Such measures occur in the context of
quantum computing, for instance. Since entanglement is a fundamental property of quantum
systems, a measure of entanglement gives a good description of the quantum nature of a ground
state, perhaps more so than correlation functions. For the formal definition of the entanglement
entropy, consider the Hilbert space as a tensor product of local spaces associated to the sites of a
quantum system. This can be written as a tensor product of the two quantum spaces associated
to the regions A and its complement: H = A ⊗ Ā. Then the entanglement entropy is the von
Neumann entropy of the reduced density matrix ρA associated to A:

SA = TrAρA log ρA , ρA = TrĀ|gs〉〈gs| . (1.1)

In this work we will be interested in 1-dimensional quantum systems. The entanglement of
quantum spin chains has been extensively studied in the literature [6]-[14]. The scaling limit,
describing the universal part of the quantum chain behaviour near a quantum critical point,
is a quantum field theory (QFT) model (which we will assume throughout to possess Poincaré
invariance). The scaling limit is obtained by approaching the critical point while letting the
length of the region A go to infinity in a fixed proportion with the correlation length. It is
known since some time [15]-[18] that the bi-partite entanglement entropy can be re-written in
terms of more geometric quantities in this limit, using a “replica trick”. It is related to the
partition function Zn(x1, x2) of the (euclidean) QFT model on a Riemann surface Mn,x1,x2

with
two branch points, at the points x1 and x2, and n sheets cyclicly connected. The position of the
branch points correspond to the end-points of the region A in the scaling limit. The relation is
based on the simple re-writing SA = − limn→1

d
dnTrAρn

A, which gives:

SA = − lim
n→1

d

dn

Zn(x1, x2)

Zn
1

. (1.2)

Naturally, this expression implies that we must analytically continue the quantity Zn(x1, x2)
from n ∈ N, where it is naturally associated to Riemann surfaces, to n ∈ [1,∞). The object
TrAρn

A certainly has a well-defined meaning for any n such that Re(n) > 0. Indeed, ρA is
hermitian (and has non-negative eigenvalues summing to 1), so that TrAρn

A is the sum of the nth

powers of its eigenvalues (with multiplicities). Note that this is an analytic continuation from
positive integers n to complex n that satisfies the requirements of Carlson’s theorem [19], hence
the unique one that does. The scaling limit of this object is what defines the proper analytic
continuation of Zn(x1, x2). It is natural to assume, as it has been done before [15], that the two
branch points just become conical singularities with angle 2πn, the rest of the space being flat.
This is the point of view that we will take.

In [20], the ratio of partition functions Zn(x1, x2)/Z
n
1 was studied at large distances |x1−x2| =

r for certain 1+1-dimensional integrable QFTs. The main feature of these models is that there
is no particle production in any scattering process and the scattering (S) matrix factorizes into
products of 2-particle S-matrices which can be calculated exactly (for reviews see e.g. [21]-[25]).
Taking the S-matrix as input it is then possible to compute the matrix elements of local operators
(also called form factors). This is done by solving a set of consistency equations [26, 27]. This
is known as the form factor bootstrap program for integrable QFTs. In [20], this program was
used and generalised in order to compute Zn(x1, x2)/Z

n
1 in the case of integrable models with

1



diagonal scattering matrix (that is, without backscattering). It was deduced that for this class
of models, the entanglement entropy behaves at large length r of the region A as

SA = − c

3
log(εm1) −

1

8

ℓ
∑

α=1

K0(2rmα) + O
(

e−3rm1
)

. (1.3)

Here, mα are the masses of the ℓ particles in the QFT model, with m1 ≤ mα. The first term
is the expected saturation of the entanglement entropy (with c the ultraviolet central charge),
the precise value of which depends on the details of the microscopic theory included into the
non-universal small distance ε. The interesting feature is the universal second term, where we
see that the leading exponential corrections are independent of the scattering matrix, and only
depend on the particle spectrum of the model. This is quite striking: for instance, a model
of ℓ free particles of masses mα will give the same leading exponential corrections as one with
diagonally interacting particles with the same masses.

The purpose of this paper is to point out that this result still holds for non-diagonal integrable
models, and to analyse the particular case of the sine-Gordon model. We obtain the first
large-distance correction to Zn(x1, x2)/Z

n
1 for that model and provide a detailed analysis of its

large-n behaviour. This analysis gives a numerical confirmation of the main result (1.3). The
large-n behaviour also shows interesting features that are in relation with the properties of the
perturbing field: it is linear ∝ n in the super-renormalisable case, and has an extra logarithmic
factor ∝ n log n in the marginally renormalisable case (where the sine-Gordon model represents
a sector of the SU(2)-Thirring model).

The paper is organised as follows: In section 2 we review the relationship, discussed in [20],
between the partition function (hence the entanglement entropy) and the two-point function of
branch-point twist fields in a theory consisting of n copies of a given integrable model. We gen-
eralise the procedure introduced in [20] for computing the entanglement entropy from analytic
properties of form factors of branch-point twist fields to integrable models including backscat-
tering. This is based on expressing the two-point function in terms of a form factor expansion.
For all such models we conclude that, under certain assumptions, the leading order correction
to the entropy in the infrared limit is of the same form as that obtained in [20] for theories
with diagonal scattering. In section 3 we introduce the sine-Gordon model and obtain the two-
particle form factors of the branch-point twist fields. In section 4 we check these form factors
for consistency by extracting the underlying conformal dimension of the twist fields. In section
5 we check our general result from section 2 for the sine-Gordon model, and provide a large-n
analysis of the two-particle contribution to the two-point function. We find good analytical and
numerical agreement with the results of section 2. In section 6 we present our conclusions and
outlook.

2 Form factor equations and the entanglement entropy

2.1 Form factor equations

This section follows closely [20]. Let us consider some model of 1+1-dimensional QFT. For
clarity, we will characterise it by its lagrangian density L(φ) depending on some “fundamental”
field φ, although the results hold also when no lagrangian formulation is available. In [20], it
was shown that the partition function Zn(x1, x2) on Mn,x1,x2

is proportional to a two-point
correlation function of certain twist fields in an extended model, composed of n independent
copies of the initial theory. The lagrangian density of this extended model, for instance, is
L(n)(φ1, . . . , φn) =

∑n
j=1 L(φj). This model possesses a natural Zn internal symmetry under
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cyclic exchange of the copies, σ : φj 7→ φj+1 (j = 1, . . . , n − 1), φn 7→ φ1. By a standard
procedure (see, for instance, the explanations in [20]), to this symmetry and to that of the
opposite cyclic exchange σ−1, we can associate, respectively, the twist fields T and T̃ , called
branch-point twist fields. Their two-point function is simply related to the partition function of
the original model on the Riemann surface:

Zn(x1, x2)

Zn
1

= Znε2dn〈T (x1)T̃ (x2)〉 (2.1)

where here an below we use 〈· · ·〉 for denoting correlation functions in the extended model L(n).
Here ε is some short-distance scale, Zn is a non-universal normalisation (with Z1 = 1), and dn

is the scaling dimension of the twist fields [17, 20]

dn =
c

12

(

n − 1

n

)

, (2.2)

where c is the central charge of the ultra-violet conformal field theory associated to L (that
describes the short-distance behaviours of correlation functions in the model L). The funda-
mental property of the twist fields T and T̃ , as operators on the Hilbert space of L(n), is the
“semi-locality” property with respect to any local field O:

O(y)T (x) = T (x)(σO)(y) x1 < y1

O(y)T (x) = T (x)O(y) x1 > y1

O(y)T̃ (x) = T̃ (x)(σ−1O)(y) x1 < y1

O(y)T̃ (x) = T̃ (x)O(y) x1 > y1 . (2.3)

This implies that O and T (or T̃ ) are mutually local∗ only when O is invariant under σ. Along
with the fact that they have the lowest dimension, given by (2.2), and that they are invariant
under all other symmetry transformations of the model L(n) that are in agreement with σ,
this fixes T and T̃ uniquely up to normalisation (for definiteness, we will assume the CFT
normalisation, 〈T (x)T̃ (0)〉 ∼ |x|−2dn).

An important remark is that these twist fields are local fields: they commute with the energy
density at space-like distances†. This is a consequence of the fact that they are associated to a
symmetry. In particular, the resulting two-point function, which is proportional to the partition
function of L(n) with a defect line extending from x1 to x2 through which the fields are affected
by the symmetry transformation, is independent of the shape of this defect line (this is sometimes
called a topological defect). This is simply related to the fact that the partition function of L
on the Riemann surface Mn,x1,x2

is independent from the shape of the branch connections.
Let us now consider L to be a massive integrable QFT model. The Hilbert space of massive

QFT is described by physical particles, and there are two bases, one corresponding to well-
defined separated particles coming from far in the past, the other corresponding to those leaving
far in the future. The overlap between these bases is the scattering matrix, and the main
characteristic of integrable models is that their scattering preserves the number of particles
involved and the set of momenta, and that it factorises into two-particle processes, as if particles
were scattering by pairs at very distant space-time points from each other. Hence, only the two-
particle to two-particle scattering matrix is relevant, and consistency under all possible pair-wise

∗That is, they commute, hence are quantum mechanically independent, at space-like distances.
†The set of all local fields that constitute a QFT is the set of those that are mutually local with respect to the

energy density.
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separations gives the Yang-Baxter equation. Consider an integrable model with mass spectrum
{mα, α = 1, . . . , ℓ} (some masses may be equal). Let us denote by |θ1, . . . , θk〉α1...αk

with
θ1 > · · · > θk the in-states with k particles of rapidities θ1, . . . , θk and, respectively, of particle
types (quantum numbers) α1, . . . , αk. For θ1 < . . . < θk, this will represent the out-states.
Then, the two-particle scattering matrix is defined by

|θ1, θ2〉α1α2
=
∑

β1,β2

S
β1β2
α1α2

(θ1 − θ2)|θ2, θ1〉β2β1

where we used relativistic invariance in order to write the scattering matrix as function of the
rapidity differences. This equation holds for θ1 > θ2 as well as θ1 < θ2, thanks to unitary. One of
the main achievements of massive integrable QFT is the exact calculation of scattering matrices
in many models, from its expected physical properties along with the Yang-Baxter equation (or,
in some cases, from Bethe ansatz solution of an underlying integrable microscopic model).

Another important result of massive integrable QFT is the exact calculation of some form
factors in many models [26, 27] (see [28] for a recent review). Form factors are matrix elements
of local fields between the vacuum and a many-particle state (say an in-state):

F
O|α1...αk

k (θ1, . . . , θk) = 〈vac|O(0)|θ1, . . . , θk〉α1...αk
. (2.4)

They are, more precisely, the analytic continuation of these matrix elements in the rapidity
variables. The exact evaluation of these objects follows from solving a set of expected properties
that involve the exact two-particle scattering matrix and form a Riemann-Hilbert problem,
along with certain minimality assumptions on the analytic structure. Besides integrability,
an important requirement for this Riemann-Hilbert problem to hold is locality of the field O.
Indeed, a strong indication of its validity is that it is possible to show that two fields whose form
factors solve it commute at space-like distances. For the simplest local fields, this Riemann-
Hilbert problem is well known and can be solved in many cases.

If L is integrable, then certainly L(n) also is, with n times as many particles, which we will
denote by the double index (α, i) for α = 1, . . . , ℓ and i = 1, . . . , n. Its scattering matrix is
simply given by

S
(β1,j1) (β2,j2)
(α1,i1) (α2,i2)

(θ) = δi1,j1δi2,j2 ×
{

δα1,β1
δα2,β2

i1 6= i2

S
β1β2
α1α2

(θ) i1 = i2
. (2.5)

Locality of the twist fields T and T̃ along with the exchange relations (2.3) were used in [20] in
order to justify a Riemann-Hilbert problem for their form factors in integrable models with diago-
nal scattering (that is, with S

β1β2
α1α2

(θ) = Sα1α2
(θ)δα1,β1

δα2,β2
). The generalisation to non-diagonal

scattering is straightforward. We will consider only T , since T̃ = T † on the Hilbert space. Let

us denote by µ, ν and ω double indices of the form (α, j), and by F
T |µ1...µk

k (θ1, . . . , θk, n) the
form factors of T in the n-copy model L(n). They are analytic in the rapidity differences except
for poles (that may accumulate at infinity), and satisfy the relations

F
T |...µiµi+1...

k (. . . , θi, θi+1, . . . , n) =
∑

νi,νi+1

S
νiνi+1
µiµi+1

(θi i+1)F
T |...νi+1νi...
k (. . . , θi+1, θi, . . . , n),

F
T |µ1µ2...µk

k (θ1 + 2πi, . . . , θk, n) = F
T |µ2...µkµ̂1

k (θ2, . . . , θk, θ1, n), (2.6)
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and

− iResθ̄0=θ0
F

T |µ̄µµ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk, n) = F
T |µ1...µk

k (θ1, . . . , θk, n),

−iResθ̄0=θ0
F

T |µ̄µ̂µ1...µk

k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk, n) =
∑

ν1,...,νk

Pν1,...,νk

µ̂µ1...µk
(θ0, θ1, . . . , θk, n)

×F
T |ν1...νk

k (θ1, . . . , θk, n) (2.7)

with
Pν1,...,νk

µ̂µ1...µk
(θ0, θ1, . . . , θk, n) =

∑

ω1,...,ωk−1

Sω1ν1

µ̂µ1
(θ01)S

ω2ν2

ω1µ2
(θ02) · · ·Sµ̂νk

ωk−1µk
(θ0k). (2.8)

Here θij = θi−θj . As function of θ1 for real θ2, . . . , θk, there are no poles of F
T |µ1...µk

k (θ1, . . . , θk, n)
in the strip Im(θ1) ∈ [0, π], except for those given by the last two equations, and for poles at
purely imaginary values (and with purely imaginary residues) corresponding to bound states
between the associated particles (note that we will not consider any bound states in the sine-
Gordon example studied below). In the second equation, the crossing or locality relation, we
introduced the symbol µ̂ = (α, j + 1). As compared to the usual form factor equations, it is
altered by the nature of the exchange relation and it now relates form factors associated to
different particle sets (belonging to different copies). Finally, the last two equations generalise
the standard kinematic residue equation to branch-point twist fields, where we introduced the
symbol µ̄ = (ᾱ, j) with ᾱ denoting the quantum number of the anti-particle of α in the theory
L. Once more, the exchange relations (2.3) are responsible for the splitting into two equations,
and the shift in µ̂.

It is instructive to specialise to two particles; this is what gives the main result (1.3) for the
entropy (one-particle form factors of spinless fields are θ-independent). In this case, the first
two form factor equations specialise to

F
T |(α,j) (β,k)
2 (θ, n) =

∑

δ,γ

F
T |(γ,k) (δ,j)
2 (−θ, n)S

(δ,j) (γ,k)
(α,j) (β,k)(θ) = F

T |(β,k) (α,j+1)
2 (2πi − θ, n), (2.9)

for all values of j, k, α and β, where θ is now the rapidity difference. From the equations above,
from (2.5) and from application of the Zn symmetry, it follows:

F
T |(α,i) (β,i+k)
2 (θ, n) = F

T |(α,j) (β,j+k)
2 (θ, n) ∀ i, j, k, α, β (2.10)

F
T |(α,1) (β,j)
2 (θ, n) = F

T |(β,1) (α,1)
2 (2π(j − 1)i − θ, n) ∀ α, β, j ∈ {2, . . . , n + 1}.(2.11)

The last equation at j = n + 1, and the first equation of (2.6), give

F
T |(α,1) (β,1)
2 (θ, n) =

∑

δ,γ

F
T |(γ,1) (δ,1)
2 (−θ, n)Sδγ

αβ(θ) = F
T |(β,1) (α,1)
2 (2πni − θ, n), (2.12)

so, as in [20], we can solve for the form factors associated to particles in the first copy and then
use (2.11) to obtain all other solutions. From now on we will abbreviate

F
T |(α,1)(β,1)
2 (θ, n) := F

T |αβ
2 (θ, n). (2.13)

The simple form of the scattering matrix for particles living in different sheets, and the fact
that no bound state can occur between particles in different copies, simplifies drastically the pole
structure of the form factors. A combination of the equations above along with the two-particle

case of the last two equations of (2.7) gives that F
T |αβ
2 (θ, n) is analytic for Im(θ) ∈ [0, 2πn]

except if ᾱ = β for poles at θ = iπ, with residue i〈T 〉, and at θ = 2iπn− iπ, with residue −i〈T 〉,
and for possible poles in Im(θ) ∈ (0, π) and in Im(θ) ∈ (2πn − π, 2πn) corresponding to bound
states.
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2.2 Conical singularities and the entanglement entropy

The analytic structure described above is sufficient to establish the result (1.3), following
arguments of [20]. The most delicate point of these arguments is the analytic continuation in
n, which still needs further justification. Below we attempt to support the arguments from the
geometrical picture of conical singularities. Another point is that we must assume that form
factors at real rapidities vanish faster than (n − 1)

1

2 as n → 1. They certainly do vanish as
n → 1, since then the branch-point twist field becomes the identity field. They were observed to
vanish proportionally to n − 1 in [20]. We first write the two-point function in the two-particle
approximation:

〈T (r)T̃ (0)〉 ≈ 〈T 〉2


1 +
1-part.

terms
+

n

8π2

ℓ
∑

α,β=1

∞
∫

−∞

∞
∫

−∞

dθ1dθ2fα,β(θ12, n) e−r(mα cosh θ1+mβ cosh θ2)





(2.14)
where

〈T 〉2fα,β(θ, n) =

n
∑

j=1

∣

∣

∣F
T |(α,1)(β,j)
2 (θ, n)

∣

∣

∣

2
(2.15)

=
∣

∣

∣
F

T |αβ
2 (θ, n)

∣

∣

∣

2
+

n−1
∑

j=1

∣

∣

∣
F

T |αβ
2 (−θ + 2πij, n)

∣

∣

∣

2
.

There is no contribution from the one-particle terms when we take the derivative with respect
to n and evaluate it at n = 1, since they are squares of (analytically continued) one-particle
form factors, which are θ-independent and vanish faster than n − 1 as n → 1 by assumption.

As for the function fα,β(θ, n), coming from two-particle form factors, let us denote by
f̃α,β(θ, n) its analytic continuation from n = 1, 2, . . . to n ∈ [1,∞). The analytic continua-
tion in n of the form factors themselves, for fixed rapidity, is natural from the geometrical
picture of conical singularities with angle 2πn. For any n real and positive, form factors should
have kinematic poles at θ = iπ and θ = 2iπn− iπ representing particles going in a straight line
on either sides of the conical singularity. They also possibly have bound state poles as described
above corresponding to bound states forming on either side, and they satisfy all other properties
stated above, now with n real and positive. For technical reasons, we must assume that the
residues at bound state poles are not diverging as n → 1. It is natural to expect that for any
fixed rapidity, the resulting form factors do not “oscillate” as functions of n. More precisely,
that they have definite convexity, at least for large enough n. As for the sum over j in (2.15), it
should be understood, when multiplied by n like in (2.14), as the total two-particle contribution
with particles allowed to cover the region all around the conical singularities. Intuitively, it
should be smooth and should not present any oscillations either in n, since the space around
the conical singularities just increases linearly with n. Hence it should have definite convexity,
at least for n large enough (where parallel incoming straight trajectories just to the right and to
the left of the conical singularity are far apart past it). In fact, a natural and more constraining
requirement is that no oscillatory terms are present in the large-n expansion. These properties
may fix uniquely the analytic continuation in n.

A smooth function of n > 1 can be obtained easily from the sum over j. Methods used in
[20] lead to the fact that in the limit n → 1, the only possible contribution to the derivative

w.r.t. n is from the collision of the kinematic poles in F
T |αβ
2 (θ, n) when α = β̄. This uses the

assumption that form factors vanish faster than (n − 1)
1

2 , and the fact that these are the only
singularities that can collide as n → 1. Hence the contribution can be evaluated exactly by
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extracting these kinematic poles. For completeness and clarity, let us provide here the explicit
analytic continuation of the sum over j, following [20] and emphasising the general principles
used. We write

n−1
∑

j=1

∣

∣

∣F
T |αβ
2 (−θ + 2πij, n)

∣

∣

∣

2
=

1

2i

∮

ds g(s) cot πs − Q (2.16)

where
g(s) = F

T |αβ
2 (−θ + 2πis, n)(F

T |αβ
2 )∗(−θ − 2πis, n) . (2.17)

The contour ranges from Re(s) = ǫ to Re(s) = n − ǫ encircling counter-clockwise the segment
s ∈ [ǫ, n − ǫ] for some 0 < ǫ < 1/2 near enough to 1/2 so that no bound state singularity can
be encircled. If the form factors at infinite rapidities vanish sufficiently fast (in all examples
calculated, they vanish exponentially, which is sufficient), then the contour can be widened up
to Im(s) = ±∞, since the contribution at Im(s) = ±∞ vanishes. The quantity Q is the sum of
the residues from the kinematic poles in the product of form factors themselves:

Q =
∑

kinematic poles s̃

Ress=s̃

(

F
T |αβ
2 (−θ + 2πis, n)(F

T |αβ
2 )∗(−θ − 2πis, n)

)

π cot πs̃

= δᾱ,β tan

(

θ

2

)

Im
(

F
T |αᾱ
2 (−2θ + iπ) − F

T |αᾱ
2 (−2θ + 2iπn − iπ)

)

. (2.18)

Using the n-periodicity of cot πs, the part of the integration at Re(s) = n− ǫ can be re-written,
and the contour integral in (2.16) becomes

1

2

∫ ∞

−∞
dy (g(n + iy − ǫ) cot π(iy − ǫ) − g(iy + ǫ) cot π(iy + ǫ)) (2.19)

This expression is analytic in n; as n is varied continuously down to n = 1, no pole crosses the
y integration line. The expression for Q is analytic in n for n > 1 as well.

Note that we used the function π cot πs, which is a function that remains unchanged under
s 7→ s + n for any integer n and that has simple poles with equal residues, in the band Re(s) ∈
(0, n), only on the integers 1, 2, . . . , n−1. The poles were used to reproduce the correct sum, and
periodicity was used to cure the part of the integration contour at Re(s) = n−ǫ, which otherwise
would have crossed poles as n is varied continuously. However, we wish to emphasise that no
periodicity property of the function g(s) (related to the form factors) itself is used, contrary to
the derivation presented in [20]. The function g(s) does not cause problems since as n is varied,
its poles move accordingly. Could we replace π cot πs by another function u(s)? If we require
that u(s) do not depend explicitly on n in addition to the properties above, then it is uniquely
fixed to π cot πs. Relaxing periodicity to, for instance, u(s+1) = v(s)u(s) would impose v(s) = 1
for s integer (in order to have the correct residues), and conditions on convergence at infinity
would require v(s) = 1. Note also that the expression (2.19) does not depend on ǫ even for n
non-integer.

The integral (2.19) have definite convexity as function of n, at least for large enough n. This
follows from expected convexity properties of the form factors themselves. The same holds for
the residues Q. Integration over θ should preserve these properties for large enough n, and it
seems natural to expect that the full large-n expansion does not contain oscillatory terms. Of
course, a more complete analysis of the n-dependence of Q and of the integral (2.19) would be
useful.

It is clear that the integral in (2.19) vanishes when n → 1 faster then n−1 by our assumption,
and that Q vanishes at least like (n− 1)3/2 for any θ 6= 0. The only possible obstruction in Q is
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when θ → 0, due to the kinematic pole of the first term in (2.18) at argument (2n − 1)iπ, and
the kinematic pole of the second term at argument iπ. Extracting these poles gives, for n → 1
and θ → 0,

f̃α,β(θ, n) = δᾱ,β f̃α,ᾱ(0, 1)

(

iπ(n − 1)

2(θ + iπ(n − 1))
− iπ(n − 1)

2(θ − iπ(n − 1))

)

(2.20)

with

f̃α,ᾱ(0, 1) =
1

2
. (2.21)

Here and below we adopt the convention that f̃α,ᾱ(0, 1) = limn→1 f̃α,ᾱ(0, n). This immediately
gives

(

∂

∂n
f̃α,β(θ, n)

)

n=1

=
π2

2
δ(θ)δᾱ,β . (2.22)

This has a non-zero measure at θ = 0, and proves (1.3).
As we mentioned above, there are two main requirements for the argument to be valid:

first, an appropriate analytic continuation has to be taken, in agreement with the intuition from
conical singularities, and second, the analytically continued one- and two-particle form factors
have to vanish, for any real rapidity, faster than (n − 1)

1

2 as n → 1. As we said above, for the
latter requirement, in the cases constructed in [20], it was observed that form factors vanish
like n − 1, and this is what is expected in general. Below we provide further evidence for both
requirements in the case of the two-particle form factors by constructing them explicitly in the
sine-Gordon model. In particular, we verify numerically the striking fact that f̃α,ᾱ(0, 1) = 1

2

is in agreement with nf̃α,ᾱ(0, n) having no oscillatory terms in its large-n expansion. We also
find that it diverges like n as n → ∞ in the super-renormalisable case, and like n log n in the
marginally renormalisable case.

3 The sine-Gordon case

Let us now consider the specific sine-Gordon case. This model can be defined by the lagrangian

L =
1

2
(∂0ϕ)2 − 1

2
(∂1ϕ)2 + µ cos(βϕ) , (3.1)

where µ has scaling dimension 2β2 − 2 and β does not renormalise. We will use the variable

ν =
β2

8π − β2 . (3.2)

For ν ≥ 1, the spectrum of the model is known to be composed of two particles with equal
masses, which we will label by + and −, representing the quantised version of soliton and anti-
soliton in the classical theory. For simplicity we will consider this region only. For ν < ∞, the
model is super-renormalisable. At ν = 1, the particles are free with fermionic statistics, and the
model is equivalent to a massive Dirac theory. The model with ν > 1 can be seen as the massive
Thirring model, a perturbation of the massive Dirac theory that preserves the U(1) symmetry.
From this viewpoint, the asymptotic particles are the positively and negatively charged version
of the same particle. As ν → ∞, the model specialises to (a sector of) the SU(2)-Thirring
model, which is marginally renormalisable.
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The scattering of soliton with anti-soliton is non-diagonal. The scattering matrix is given by
[29]

S+−
+−(θ) =

sinh
(

θ
ν

)

sinh
(

iπ−θ
ν

)S++
++(θ), S−+

+−(θ) =
sinh

(

iπ
ν

)

sinh
(

iπ−θ
ν

)S++
++(θ), (3.3)

with

S++
++(θ) = S−−

−−(θ) = − exp





∫ ∞

0

dt

t

sinh
(

t(1−ν)
2

)

sinh
(

tθ
iπ

)

sinh(tν/2) cosh(t/2)



 . (3.4)

Since branch-point twist fields have zero U(1) charge, their one-particle form factors vanish.
On the other hand, the relations (2.12) give the following system of coupled equations for their
two-particle form factors:

F
T |+−
2 (θ, n) =

∑

γ,δ=±

F
T |γδ
2 (−θ, n)Sδγ

−+(θ) = F
T |−+
2 (2πin − θ, n), (3.5)

F
T |−+
2 (θ, n) =

∑

γ,δ=±

F
T |γδ
2 (−θ, n)Sδγ

+−(θ) = F
T |+−
2 (2πin − θ, n). (3.6)

These equations can be diagonalised by introducing the linear combinations F
T |+−
2 (θ, n) ±

F
T |−+
2 (θ, n). However, the branch-point twist fields are also invariant under charge conjugation

+ ↔ −. Indeed, this is a symmetry of the action, which keeps unchanged partition functions
on Riemann surfaces, and branch-point twist fields are associated to such partition functions.

Hence F
T |+−
2 (θ, n) = F

T |−+
2 (θ, n) and we are left with

F
T |+−
2 (θ, n) =

(

S+−
+−(θ) + S−+

+−(θ)
)

F
T |+−
2 (−θ, n) = F

T |+−
2 (2πin − θ, n) . (3.7)

It is possible to find integral representations for the combination of S-matrix elements above,

S+−
+−(θ) + S−+

+−(θ) =
sin
(

π−iθ
2ν

)

sin
(

π+iθ
2ν

)S++
++(θ) (3.8)

= − exp





∫ ∞

0

dt

t

2 sinh
(

t(ν−1)
2

)

cosh
(

t(ν−2)
2

)

sinh
(

tθ
iπ

)

sinh(νt) cosh(t/2)



 , (3.9)

where we used

sin π
2 (a + x)

sin π
2 (a − x)

= exp

[
∫ ∞

0

dt

t

2 sinh t(1 − a) sinh(tx)

sinh t

]

, for 0 < a < 1. (3.10)

Following [20], it is now straightforward to find a minimal solution to (3.7) (that is analytic for
Im(θ) ∈ [0, 2πn]) up to normalisation:

Fmin
2 (θ, n) = −i sinh

(

θ

2n

)

exp





∫ ∞

0

dt

t

2 sinh
(

t(ν−1)
2

)

cosh
(

t(ν−2)
2

)

sin2 it
2

(

n − θ
iπ

)

sinh(nt) sinh(tν) cosh(t/2)



 . (3.11)

The two particle form factor F
T |+−
2 (θ, n) can be fixed by including the right pole structure as

in [20]:

F
T |+−
2 (θ, n) =

〈T 〉 sin
(

π
n

)

2n sinh
(

iπ−θ
2n

)

sinh
(

iπ+θ
2n

)

Fmin
2 (θ, n)

Fmin
2 (iπ, n)

, (3.12)

where the normalization has been chosen so that the kinematic residue equation gives

F T
0 = 〈T 〉. (3.13)
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4 Identifying the ultraviolet conformal dimension

It is interesting to check the solutions above for consistency. A possible consistency check
consists of analyzing the short-distance behaviour of two-point functions involving the twist
field and compare that behaviour to the one expected from conformal field theory predictions.
In particular, one can look at the two-point function of the twist field with the trace of the
stress-energy tensor, Θ. It was found in [30] that

∆T = ∆T̃ = − 1

2〈T 〉

∫ ∞

0
r 〈Θ(r)T (0)〉 dr (4.1)

(where the integration is on a space-like ray). This formula is known as the ∆-sum rule. The first
equality, expected from CFT, holds from the ∆-sum rule thanks to the fact that Θ commute
with T and that Θ† = Θ. Following the derivations in [17, 20] the conformal dimension is
expected to be ∆T = dn/2, where dn was given in (2.2).

As explained in detail in [20] we can now employ the expansion of the two-point function in
terms of two particle form factors and obtain

∆T ≈ − n

〈T 〉

∞
∫

−∞

∞
∫

−∞

dθ1dθ2F
Θ|+−
2 (θ12)F

T |+−
2 (θ12, n)∗

2(2π)2m2 (cosh θ1 + cosh θ2)
2

= − n

8π2m2 〈T 〉

∞
∫

0

dθF
Θ|+−
2 (θ)F

T |+−
2 (θ, n)∗

cosh2(θ/2)
, (4.2)

where we have used the fact that F
Θ|+−
2 (θ12) = F

Θ|−+
2 (θ12) and F

Θ|±±
2 (θ12) = 0.

The two particle form factors of Θ can be obtained from results already known in the
literature. In particular, by employing the results obtained in [31, 32] for the form factors of
exponential fields and the relation between the sine-Gordon coupling constant and the soliton
mass we find:

F
Θ|+−
2 (θ) =

2πim2

ν

G(θ) cosh θ
2

sinh
(

iπ−θ
2ν

) , (4.3)

where

G(θ) = −i sinh
θ

2
exp

[

∫ ∞

0

dt

t

sinh t(1 − ν) sin2 it
(

1 − θ
iπ

)

sinh(2t) cosh t sinh(tν)

]

. (4.4)

A table of values of the integral (4.2) for different values of n and ν is presented below. The
values given in the top row in brackets are the exact values of the dimension, as predicted by
CFT. Recall that we assumed the non-existence of bound states, which is why we only consider
the case ν > 1.

n = 2 (0.0625) n = 3 (0.1111) n = 4 (0.1563) n = 5 (0.2)

ν = 1.1 0.0627 0.1115 0.1568 0.2008

ν = 1.6 0.0628 0.1118 0.1573 0.2013

ν = 2.1 0.0627 0.1115 0.1570 0.2010

ν = 2.6 0.0626 0.1113 0.1566 0.2003

ν = 3.1 0.0625 0.1111 0.1562 0.1999

ν = 3.6 0.0624 0.1111 0.1560 0.1995
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n = 6 (0.2431) n = 7 (0.2857) n = 8 (0.3281) n = 9 (0.3704) n = 10 (0.4125)

ν = 1.1 0.2440 0.2868 0.3293 0.3717 0.4139

ν = 1.6 0.2447 0.2876 0.3303 0.3728 0.4152

ν = 2.1 0.2443 0.2871 0.3297 0.3722 0.4145

ν = 2.6 0.2434 0.2861 0.3287 0.3707 0.4129

ν = 3.1 0.2428 0.2854 0.3277 0.3698 0.4119

ν = 3.6 0.2424 0.2848 0.3270 0.3690 0.4109

As we can see, all values are extremely close to the exact ones, even in the two particle ap-
proximation. This provides a consistency check for our form factor (3.12). A further check
concerns the correct normalization of the form factor (4.3). Indeed the normalization employed

here corresponds to F
Θ|+−
2 (iπ) = 2πm2 and differs from that in other places in the literature

[31]. A consistency check for this normalization consists of extracting the central charge c = 1
of the underlying CFT by employing Zamolodchikov’s c-theorem [33]:

c =
3

2

∫ ∞

−∞
drr3 〈Θ(r)Θ(0)〉 . (4.5)

Employing again the expansion of the two point function in terms of form factors, changing
variables and performing one integral as in (4.2) we obtain

c ≈ 3

8π2

∫ ∞

0

∣

∣

∣F
Θ|+−
2 (θ)

∣

∣

∣

2

cosh4(θ/2)
dθ. (4.6)

This integral can be easily evaluated numerically for different values of ν and gives

ν = 1.1 ν = 2.1 ν = 3.1 ν = 4.1 ν = 5.1

c 0.9999 0.9918 0.9888 0.9877 0.9874

5 Computation of f̃±∓(0, n): Numeric and analytic results

In this section we wish to study the behaviour of the function f̃±∓(0, n) (see (2.15)) in detail
and, most importantly, show that f̃±∓(0, 1) = 1/2 as expected. Let us introduce the notation
f̃(n) ≡ f̃+−(0, n) = f̃−+(0, n). This function, by definition, is the natural analytic continuation
of f+−(0, n) from n = 2, 3, . . . to n ∈ [1,∞), that is with the prescription of smoothness and
monotony as described in paragraph 2.2. We will obtain the form of its full large-n expansion,
with explicit first few coefficients, showing that it grows proportionally to n for any finite ν, and
to n log n for ν = ∞. This large-n expansion is interesting in its own right, and turns out to
differ quite dramatically from the 1/n expansion found for the sinh-Gordon model [20]. We will
then perform a numerical study to confirm it, and most importantly, verify the value f̃(1) = 1/2.

Let us commence by our analytical considerations. Note that the first term of (2.15) is

zero at θ = 0. For the summand, the second identity of (3.7) implies that F
T |+−
2 (2πij, n) =

F
T |+−
2 (2πi(n − j), n) for j = 1, . . . , n − 1. In addition, for any fixed value of n the value of

the function is largest for smaller values of j and decreases quickly as j approaches [n/2]. This
behaviour is particularly extreme for n very large. In that case, only for j ≪ n does the function
above have non-negligible values. Therefore, the value of f̃(n) for n → ∞ can be obtained by

replacing the sum
∑n−1

j=1 |F T |+−
2 (2πij, n)|2 by

2
∞
∑

j=1

lim
n→∞

|F T |+−
2 (2πij, n)|2 = f̃(∞). (5.1)
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This can be written as

f̃(∞) =
2

b(1/2)2

∞
∑

j=1

a(j)2b(j)2, (5.2)

where

a(j) = lim
n→∞

a(j, n) =
2(2j)

3

2
− 1

2ν

π(1 − 4j2)
, (5.3)

with

a(j, n) =
sin(π

n) sin( j π
n )

3

2
− 1

2ν

2n sin( (1−2j)π
2 n ) sin( (1+2j)π

2n ) sin( π
2n )

3

2
− 1

2ν

, (5.4)

and

b(j) = lim
n→∞

b(j, n) = lim
n→∞

Fmin
2 (2πij, n)

[

sin

(

jπ

n

)]
1

2ν
− 3

2

= exp



−
∫ ∞

0

dt

2t





2 sinh
(

t(ν−1)
2

)

cosh
(

t(ν−2)
2

)

sinh(tν) cosh(t/2)
− ν − 1

ν



 e−2tj



 , (5.5)

with

b(j, n) = exp





∫ ∞

0

dt

t





2 sinh
(

t(ν−1)
2

)

cosh
(

t(ν−2)
2

)

sinh(tν) cosh(t/2)
− ν − 1

ν





sin2 it
2 (n − 2j)

sinh(nt)



 . (5.6)

Notice that the factor sin
(

jπ
n

)
1

2ν
− 3

2

in a(j) is cancelled by a similar factor in b(j). They have

been introduced in order to guarantee that the integral in b(j) is convergent as t → 0. Formula
(5.2) holds only for ν finite; we will come back to the case ν = ∞ below. Evaluating (5.2)
numerically we obtain the values listed in the table at the end of this section.

However, contrarily to the sinh-Gordon example studied in [20], the large-n corrections to
this linear behaviour are not just of 1/n type but depend on the particular value of ν. The form
of these corrections can be determined by some analysis. Notice that

f̃(n) =



























2

b(1/2, n)2

n/2
∑

j=1

a(j, n)2b(j, n)2 − 1

b(1/2, n)2
a(n/2, n)2b(n/2, n)2 n even

2

b(1/2, n)2

(n−1)/2
∑

j=1

a(j, n)2b(j, n)2 n odd

(5.7)

Let us first analyse b(j, n) and a(j, n) independently. It is trivial to see that limj→∞ b(j)2 = 1.
More precisely, it has a large-j asymptotic expansion of the form

b(j)2 =
∞
∑

k=0

bk (2j)−2k + O(j−∞), with b0 = 1. (5.8)

where we use powers of 2j instead of j for later convenience. This formula is obtained from
a small-t expansion of the coefficient of e−2tj in the integrand in the last line of (5.5). The
corrections for finite but large n can be obtained by looking at b(j, n)/b(j). Expanding the
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resulting integrand in t while keeping intact the factor sin2 it
2 (n − 2j)/ sinh(nt) and the factor

e−2tj , then by integrating this expansion term by term, we find

b(j, n)

b(j)
= 1 +

(ν − 1)(7ν − 5)

96νn2

(

ζ

(

2, 1 − j

n

)

+ ζ

(

2, 1 +
j

n

)

− π2

)

+ O

(

1

n4

)

(5.9)

where ζ(z, a) =
∑∞

k=0(k + a)−z is the generalized Riemann zeta function. The full series is just
the exponential of a series that has terms in n−2k for k = 1, 2, . . ., with coefficients that are

functions of j/n, linear in the functions ζ
(

2k, 1 − j
n

)

+ ζ
(

2k, 1 + j
n

)

‡. This series expansion is

convergent for all j = 1, . . . , n/2.
As for the function a(j), its square has a large-j series expansion

a(j)2 =
4

π2(2j)1+
1

ν

∞
∑

k=0

akj
−2k, with a0 = 1. (5.10)

The square of its corrected form a(j, n) can be expanded at large n as follows:

a(j, n)2 = a(j)2 +
(2j)3−

1

ν

(4j2 − 1)n2

∞
∑

k=0

pk(j
2)n−2k (5.11)

where pk(j
2) is a polynomial of order k in j2. Again, this series expansion is convergent for all

j = 1, . . . , n/2. In fact, it converges for all values of n such that |n| > |j ± 1/2| and |n| > 1/2.
We now consider the large-n expansion of (5.7). We will do explicitly the case where n is

even, and comment about the agreement with the case where n is odd afterwards. First, the
subtraction − 1

b(1/2,n)2
a(n/2, n)2b(n/2, n)2 for n even can be seen, from the analysis above, to be

− 1

b(1/2)2

(

2

π

)1− 1

ν

n−1− 1

ν (1 + n−2[[n−2]]) (5.12)

where here and below we use the notation

[[x]] = some series in non-negative integer powers of x. (5.13)

Let us then consider only the term which is a sum, and subtract for convenience the value
b(1/2)2/b(1/2, n)2f̃(∞), which is just [[n−2]]. We are left with

2

b(1/2, n)2





n/2
∑

j=1

a(j, n)2b(j, n)2 −
∞
∑

j=1

a(j)2b(j)2



 . (5.14)

The pre-factor 2/b(1/2, n)2 is also [[n−2]], so we will consider the sum without pre-factor. We
will consider three parts:

I.

n/2
∑

j=1

a(j)2b(j)2 −
∞
∑

j=1

a(j)2b(j)2 = −
∞
∑

j=n/2+1

a(j)2b(j)2, (5.15)

II.

n/2
∑

j=1

{corrections to a(j)2} · b(j)2, (5.16)

III.

n/2
∑

j=1

a(j, n)2 · {corrections to b(j)2}, (5.17)

‡Note that all such functions can be written in terms of trigonometric functions, for instance ζ(2, 1 + z) +
ζ(2, 1 − z) = π2/ sin2 πz − 1/z2, but the analytic structure is clearer using the generalised zeta functions.
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where the correction terms are those from (5.11) and (5.9). In the part I, we can use the large-j
expansions of a(j)2 and b(j)2. Consider the identity

∞
∑

j=n/2+1

(2j)−z = 2−zζ
(

z, 1 +
n

2

)

= −n1−z

(

1

2(1 − z)
+

1

2n
+ n−2[[n−2]]

)

(5.18)

(here, the coefficients of the series [[n−2]] are polynomials in z), where ζ(z) = ζ(z, 1) is the
Riemann zeta function. This implies that

I : −
∞
∑

j=n/2+1

a(j)2b(j)2 =
2n− 1

ν

π2

(

−ν +
1

n
+ n−2[[n−1]]

)

. (5.19)

The contributions II can be analysed using the formula

n/2
∑

j=1

(2j)z

4j2 − 1
=

∞
∑

k=0

2z−2−2kH
(2+2k−z)
n/2

=
∞
∑

k=0

2z−2−2kζ(2 + 2k − z) + nz−1

(

1

2(z − 1)
+

1

2n
+ n−2[[n−1]]

)

. (5.20)

Here, H
(b)
a is the Harmonic number of order b

H(b)
a =

a
∑

j=1

1

jb
= ζ(b) − ζ(b, a + 1) . (5.21)

Note that the infinite sum on the right-hand side of (5.20) is convergent for any non-integer z.
Also, the coefficients in [[n−1]] are rational functions of z. Let us write b(j)2 =

∑k
k′=0 bk′(2j)−2k′

+
r(j) where r(j) is the rest. The function r(j) behaves proportionally to j−2k−2 as j → ∞, so
that the sum from 1 to n/2 of the product of r(j) times the kth correction to a(j)2 in (5.11) can
be extended to a sum from 1 to ∞ without problems. Hence for the kth contribution to II we
can write:

n−2k−2
k
∑

k′=0

n/2
∑

j=1

bk′
(2j)3−

1

ν
−2k′

4j2 − 1
pk(j

2) + n−2k−2
∞
∑

j=1

r(j)
(2j)3−

1

ν

(4j2 − 1)
pk(j

2)

−n−2k−2
∞
∑

k′=k+1

∞
∑

j=n/2+1

bk′

(2j)3−
1

ν
−2k′

(4j2 − 1)
pk(j

2) . (5.22)

The first term can be evaluated using (5.20). The second term is a contribution of the order
n−2k−2 only, and the last term can be evaluated using the negative of (5.20) without the infinite
sum of zeta functions and is of order n−2k−2−1/ν . Hence, the result is a term proportional to
n−2k−2 plus an infinite series of the form n− 1

ν [[n−1]]. For instance, the leading contributions to
this series are

2−2kpk,kn
− 1

ν

(

1

2(2 + 2k − 1/ν)
+

1

2n
+ O(n−2)

)

(5.23)

where pk,k is the coefficient of j2k in pk(j
2). When we consider all corrections, for all k =

0, 1, 2, . . ., we obtain, for the coefficient of any given order n−1/ν+k′
with fixed k′ = 0, 1, 2, . . .,

an infinite sum over k. for instance, these are the sums over all k of (5.23) in the cases k′ = 0
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and k′ = 1. We must make sure that all these infinite sums give finite results. By putting
n = aj for a > 1 in (5.11), a value where the series in (5.11) converges for all j ≥ 1, we
see that

∑∞
k=0 pk(j

2)(aj)−2k < ∞. This implies that
∑∞

k=0 pk,k−la
−2k < ∞, where pk,k−l is the

coefficient of j2k−2l in pk(j
2). Since the coefficients in [[n−1]] in (5.20) are rational functions of z,

a little analysis of (5.22) shows that this is sufficient to prove that the infinite sums that are the
coefficients of n−1/ν+k′

for any k′ = 0, 1, 2, . . . give finite results. For instance, the contributions
to n−1/ν and n−1/ν−1 can be found from

h(s) ≡
∞
∑

k=0

s2kpk,k = lim
n→∞

(

(a(j, n)2 − a(j)2)
(4j2 − 1)n2

(2j)3−
1

ν

)

j=ns

=

(

( πs

sin πs

)1+ 1

ν − 1

)

1

π2s2
(5.24)

by
∞
∑

k=0

2−2kpk,k = h(1/2) ,

∞
∑

k=0

2−2kpk,k

2 + 2k − 1/ν
= 22− 1

ν

∫ 1

2

0
ds s1− 1

ν h(s) . (5.25)

The result is that the leading contributions for the case II are

II : n−2[[n−2]]+
2

π2n
1

ν

(

ν − ν
(π

2

)
1

ν √
π

Γ
(

1 − 1
2ν

)

Γ
(

1
2 − 1

2ν

) +
1

n

(

(π

2

)1+ 1

ν − 1

)

+ n−2[[n−1]]

)

. (5.26)

Finally, a similar analysis can be done with the part III, involving the correction terms of b(j)2

in (5.9), by expanding the generalised zeta functions in powers of j/n. Considerations similar
to those above, with the fact that the expansion of the generalised zeta functions is valid for
|n| > |j|, lead to the same structure for the large-n expansion as that of parts I and II, with an
extra factor n−2k for each correction term with k = 1, 2, 3, . . .. This gives:

III : n−4[[n−2]] + n− 1

ν
−2[[n−1]] . (5.27)

Putting everything together, along with the subtraction (5.12) specific to the case n even,
we find

nf̃(n) = c0n +
c2

n
+

c4

n3
+ . . . + n− 1

ν

(

d0n + d1 +
d2

n
+ . . .

)

(5.28)

where

c0 = f̃(∞)

d0 = − ν

b(1/2)2

(

2

π

)2− 1

ν √
π

Γ
(

1 − 1
2ν

)

Γ
(

1
2 − 1

2ν

) (5.29)

d1 = 0 .

It is striking that although the intermediate steps of the analysis give terms nk− 1

ν for k =
1, 0,−1,−2, . . ., the term with k = 0 identically vanishes for all ν. In fact, one can see that the
same analysis for the case n odd, starting from the second form of (5.7), directly gives vanishing
coefficients for k = 0,−2,−4, . . .. For instance, changing n 7→ n − 1 into (5.18) erases the term
1/(2n) on the right-hand side. The other terms computed above are also unchanged in the odd
case. Hence we conjecture that the large-n expansion valid from both n even and n odd is

nf̃(n) = c0n +
c2

n
+

c4

n3
+ . . . + n− 1

ν

(

d0n +
d2

n
+

d4

n3
+ . . .

)

(5.30)
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Indeed a very precise numerical fit of nf+−(0, n) for several values of ν, is given by the
function above. Let us commence by evaluating nf̃(n) for integers n > 1 and several values of ν
(see Fig. 1). Notice that ν = 1 corresponds to the free Fermion point and, indeed for this value

Figure 1: The function nf+−(0, n) computed numerically for several values of ν and 2 ≤ n ≤ 70.

of ν we recover the result obtained analytically in [20] for the Ising model, namely f̃(n) = 1/2 for
all values of n (in particular, also for n = 1). For other values of ν the large-n linear behaviour
seems also apparent from Fig. 1 and is clearer the smaller the values of ν. In fact, for ν = 9.6
and ν = 20.4, the correct linear behaviour can only be seen at much larger values of n, because
of the importance of the term in n1−1/ν .

Our numerical analysis has revealed that the numerical values of nf+−(0, n) (especially for
small n) are best fitted by a function of the form:

F (ν, n) = (1 + n)c0 + c̃1 +
c̃2

1 + n
+ d0(1 + n)1−

1

ν +
d̃1

(1 + n)
1

ν

+
d̃2

(1 + n)1+
1

ν

, (5.31)

This function has the same large-n behaviour as (5.28) but since the expansion (5.28) is only
asymptotic its working is not guaranteed for small values of n (in particular at n = 1). Shifting
n → n + 1 constitutes a re-summation that allows us to consider small values of n. The tables
below show the values of all constants involved in (5.31) as well as the values of c0 and d0 as
obtained by numerically evaluating the sum (5.2) and the function (5.29), respectively. The
latter are in remarkably good agreement with the coefficients obtained from the fit. In addition,
we give the value F (ν, 1) which, for all ν considered, is compatible with the expected value
f̃(1) = 1/2.

ν f̃(∞) c0 (fit) d0 (exact) d0 (fit) F (ν, 1)

1.10 0.548110 0.548100 -0.089218 -0.078176 0.496148

1.50 0.711079 0.711023 -0.326980 -0.319507 0.488700

4.20 1.400983 1.400000 -1.049451 -1.043071 0.483927

9.60 2.418856 2.413256 -2.042131 -2.028276 0.485305

20.4 4.266412 4.264102 -3.866293 -3.858392 0.489379
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ν c̃1 c̃2 d̃1 d̃2

1.10 -0.564827 -0.224208 0.267706 0.066029

1.50 -0.745179 -0.189914 0.375405 0.231296

4.20 -1.613371 -0.470833 1.251032 0.567956

9.60 -3.397554 -3.514617 3.215461 3.431349

20.4 -5.850448 -9.119535 5.615018 9.110232

Concerning the values on the last table we see that, for example, the sum c0+ c̃1 which we expect
to be vanishing from the large-n expansion, indeed gives relatively small numbers compared to c0

and c̃1, especially for small ν. This is consistent with our working precision which is considerably
reduced for sub-leading terms. A plot of the function F (n, 1.5) as well as of the numerical values
of nf+−(0, n) for n = 2, 3, ..., 70 and ν = 1.5 from (5.7) can be seen in Fig. 2. The difference
|nf+−(0, n) − F (n, 1.5)| < 10−4 for all n = 2, 3, . . . , 70. In fact, this holds for all finite values of
ν considered here.

Figure 2: The functions F (n, 1.5) and G(n) and the corresponding values of nf+−(0, n) for
2 ≤ n ≤ 70.

As we can see from the expansion, the term n1−1/ν will give a very important contribution
for ν large, so that nf̃(n) should become linear in n very quickly for ν close to its minimum
value 1 and very slowly for large values of ν. In fact, in the limit ν → ∞, a similar analysis
as carried out above can be performed (although some complications appear). Both a(j, n) and
b(j, n) have well-defined ν = ∞ limit which commutes with the n = ∞ limit, giving

a(j)2ν=∞ =
4

π2

8j3

(1 − 4j2)2
, b(j)2ν=∞ =

Γ
(

3
2 + j

)2

j3Γ(j)2
. (5.32)

The leading term at large n, then, can be obtained from

n/2
∑

j=1

a(j)2ν=∞b(j)2ν=∞ ∼
n/2
∑

j=1

2

π2j
=

2

π2

(

Ψ
(

1 +
n

2

)

+ γ
)

(5.33)
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where γ is Euler’s number and Ψ(z) is the logarithmic derivative of Euler’s gamma function
Ψ(z) = Γ(z)′/Γ(z). For n large the function Ψ (1 + n/2) behaves as

Ψ
(

1 +
n

2

)

= log
(n

2

)

+ O

(

1

n

)

, (5.34)

so that the large-n expansion at ν = ∞ starts with

lim
ν→∞

nf̃(n) ∼ 1

2π
n log n (5.35)

(where we used b(1/2)2ν=∞ = 8/π). It is quite interesting to note that this logarithmic behaviour
can also be obtained from the expansion (5.30) by simply taking the limit ν → ∞. Both c0 and
d0 are divergent proportionally to ν, and these divergencies cancel out. The expansion in 1/ν
of n1−1/ν then gives the correct logarithmic term. A more precise analysis of c0 follows from

∞
∑

j=1

a(j)2b(j)2
ν→∞
=

∞
∑

j=1

(

a(j)2b(j)2 − 2

π2j

)

+
21− 1

ν

π2
ζ

(

1 +
1

ν

)

+ o(1) (5.36)

where the zeta function contains the linear divergence at large ν. The first term can be evaluated
exactly:

∞
∑

j=1

(

a(j)2b(j)2 − 2

π2j

)

=
2

π2

∞
∑

j=1

(

Γ
(

j − 1
2

)2

Γ(j)2
− 1

j

)

=
2

π2
lim
x→1

(2xK(x) + log(1 − x))

= − 4

π2

(

Ψ

(

1

2

)

+ γ

)

(5.37)

(where K(x) is the complete elliptic integral of the first kind). From this, the ν = ∞ limit of
(5.30) gives the conjecture

lim
ν→∞

2πnf̃(n) =
(

n +
e2

n
+

e4

n3
+ . . .

)

log n + (γ + log 32 − log π)n +
f2

n
+

f4

n3
+ . . . (5.38)

We will now fit the values of nf+−(0, n) obtained numerically to a function of the type:

G(n) = e0(1 + n) log(n + 1) + ẽ1 log(n + 1) +
ẽ2 log(n + 1)

1 + n
+ f0(n + 1) + f̃1 +

f̃2

n + 1
. (5.39)

Similarly as F (ν, n), the function G(n) has a large n expansion of the type (5.38). The coefficients
e0 and f0 from the fit, as well as their exact values from (5.38) are given in the following table

e0 (exact) e0 (fit) f0 (exact) f0 (fit) ẽ1 ẽ2 f̃1 f̃2

0.159155 0.158971 0.461266 0.462474 -0.183370 -0.124718 -0.615249 0.248293

so that G(1) = 0.4838988. Fig. 2 shows the function G(n) as well as the numerical values
of nf+−(0, n) from (5.7). The agreement between the two sets of values is very good. More
precisely |nf+−(0, n) − G(n)| < 10−4 for all n = 2, . . . , 70.
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5.1 Discussion of the large-n results

We notice from the graphs and from the fitting functions that the value of 1/2 at n = 1 is
perfectly in agreement with smooth and convex analytic continuations agreeing with the given
values at n = 2, 3, . . ., in all cases analysed. Also, the large-n expansion makes it clear that no
oscillatory terms appear. We also remark that the leading large-n behaviour is linear in all super-
renormalisable cases ν < ∞, and is proportional to n log n in the marginally renormalisable case
ν = ∞ (this is still a non-conformal case, where a scale appears by dimensional transmutation).
This seems to suggest that the large-n behaviour is related to the type of perturbing field,
and we recall that logarithmic functions (of the cutoff) usually appear with naively marginal
perturbations. Moreover, the full large-n expansion in the finite-ν case seems to encode some
characteristics of the perturbing field, as it also has a part with non-integer powers of n (although
these powers are not in linear relation with the dimension of the field). Also striking and pointing
towards a perturbation-theory origin of the large-n behaviour is the fact that the limit ν → ∞
can be taken directly in this large-n expansion, although it is expected to be only an asymptotic
expansion, and the limit ν → ∞ cannot be taken in the various intermediate steps separately.
We recall that a good regularisation scheme of the sine-Gordon model at ν = ∞ is a “non-
perturbative” dimensional regularisation, whereby ν is taken finite (thus changing the dimension
of the perturbing field) and sent to infinity at the end of the calculation (see for instance [34]).
This leads to logarithmic functions in a similar way to that by which log n appeared here.

6 Conclusions and outlook

This paper provides an extension and generalisation of the work [20] to integrable QFTs with
backscattering. The main conclusion following from [20] and the present work is that the form
of the leading correction to the bi-partite entropy at large distances of any integrable QFT is
“universal” in the sense that it does not depend on the precise form of the scattering matrix (in
particular, whether or not it is diagonal) but only on the mass spectrum of the model.

The argument leading to this result, developed in [20], uses the well-known replica trick,
which involves the partition function on Riemann surfaces with two branch points and n sheets,
related to the correlation function of twist fields. We obtained the first large-distance (distance
between the branch points) correction to this partition function in the sine-Gordon model. This
correction presents an interesting large-n asymptotic, which seems to be in relation with the type
of perturbing field giving the massive theory. It would be very interesting to find a satisfying
explanation for this large-n behaviour, in particular in the super-renormalisable case, where the
leading behaviour is just linear.

From the replica trick, the main subtlety in obtaining the entanglement entropy is the ana-
lytic continuation in n, the number of Riemann sheets. In the present paper we attempted to
provide support for the results using the geometrical picture of conical singularities with angle
2πn instead of branch points, and appealing to some convexity properties as function of n. How-
ever, a more precise statement about the uniqueness of the analytic continuation we obtained is
still missing.

It would be interesting to investigate higher order corrections to the entropy, that is, higher
particle form factor contributions to the correlation function (2.14) and, in particular, determine
whether or not they are of a similar “universal” nature as the leading correction already obtained.
This would involve the computation of higher particle form factors of the twist fields. Two-
particle form factors were obtained here by solving a set of form factor consistency equations,
but they could also be obtained using Lukyanov’s method of angular quantisation [35], as was
done in the sinh-Gordon model in [20]. This may be quite helpful for higher particle numbers.
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Also, investigation in other models may help decipher the properties of form factors of twist
fields, for low-particle numbers as well. The geometrical meaning of the field may provide
simplifications. For instance, can there be non-zero one-particle form factors?

Another outstanding point is the generalisation of the approach employed here to the com-
putation of the entanglement entropy of quantum systems consisting of multiply disconnected
regions. Such an extension could provide an alternative way to proving certain natural general
properties of the entanglement entropy shown to be valid in conformal field theory [17] and
recently discussed in a more general framework in [36].

Acknowledgments: We are grateful to John Cardy for discussions.
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