20 research outputs found

    Mechanisms of benthic prey capture in wrasses (Labridae)

    No full text
    Teleost fishes capture prey using ram, suction, and biting behaviors. The relative use of these behaviors in feeding on midwater prey is well studied, but few attempts have been made to determine how benthic prey are captured. This issue was addressed in the wrasses (Labridae), a trophically diverse lineage of marine reef fishes that feed extensively on prey that take refuge in the benthos. Most species possess strong jaws with stout conical teeth that appear well-suited to gripping prey. Mechanisms of prey capture were evaluated in five species encompassing a diversity of feeding ecologies: Choerodon anchorago (Bloch, 1791), Coris gaimard (Quoy and Gaimard, 1824), Hologymnosus doliatus (Lacepède, 1801), Novaculichthys taeniourus (Lacepède, 1801) and Oxycheilinus digrammus (Lacepède, 1801). Prey capture sequences were filmed with high-speed video at the Lizard Island Field Station (14°40primeS, 145°28primeE) during April and May 1998. Recordings were made of feeding on pieces of prawn suspended in the midwater and similar pieces of prawn held in a clip that was fixed to the substratum. Variation was quantified among species and between prey types for kinematic variables describing the magnitude and timing of jaw, hyoid, and head motion. Species differed in prey capture kinematics with mean values of most variables ranging between two and four-fold among species and angular velocity of the opening jaw differing seven-fold. The kinematics of attached prey feeding could be differentiated from that of midwater captures on the basis of faster angular velocities of the jaws and smaller movements of cranial structures which were of shorter duration. All five species used ram and suction in combination during the capture of midwater prey. Surprisingly, ram and suction also dominated feedings on attached prey, with only one species making greater use of biting than suction to remove attached prey. These data suggest an important role for suction in the capture of benthic prey by wrasses. Trade-offs in skull design associated with suction and biting may be particularly relevant to understanding the evolution of feeding mechanisms in this group

    Swamp sparrows modulate vocal performance in an aggressive context

    No full text
    Vocal performance refers to the proficiency with which a bird sings songs that are challenging to produce, and can be measured in simple trilled songs by their deviation from an upper bound regression of frequency bandwidth on trill rate. Here, we show that male swamp sparrows (Melospiza georgiana) increase the vocal performance of individual song types in aggressive contexts by increasing both the trill rate and frequency bandwidth. These results are the first to demonstrate flexible modulation by songbirds of this aspect of vocal performance and are consistent with this signal feature having a role in aggressive communication

    Data from: Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements

    No full text
    Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation

    Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae

    No full text
    The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual ‘breakthroughs’ in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes
    corecore