1,175 research outputs found
Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation
Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1 Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning
Use of Multiple Stream Temperature Logger Models Can Alter Conclusions
Remote temperature loggers are often used to measure water temperatures for ecological studies and by regulatory agencies to determine whether water quality standards are being maintained. Equipment specifications are often given a cursory review in the methods; however, the effect of temperature logger model is rarely addressed in the discussion. In a laboratory environment, we compared measurements from three models of temperature loggers at 5 to 40 °C to better understand the utility of these devices. Mean water temperatures recorded by logger models differed statistically even for those with similar accuracy specifications, but were still within manufacturer accuracy specifications. Maximum mean temperature difference between models was 0.4 °C which could have regulatory and ecological implications, such as when a 0.3 °C temperature change triggers a water quality violation or increases species mortality rates. Additionally, precision should be reported as the overall precision (including a consideration of significant digits) for combined model types which in our experiment was 0.7 °C, not the ≤0.4 °C for individual models. Our results affirm that analyzing data collected by different logger models can result in potentially erroneous conclusions when \u3c1 °C difference has regulatory compliance or ecological implications and that combining data from multiple logger models can reduce the overall precision of results
A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status
A high-precision pressure probe is described which allows non-invasive online-monitoring of the water relations of intact leaves. Real-time recording of the leaf water status occurred by data transfer to an Internet server. The leaf patch clamp pressure probe measures the attenuated pressure, Pp, of a leaf patch in response to a constant clamp pressure, Pclamp. Pp is sensed by a miniaturized silicone pressure sensor integrated into the device. The magnitude of Pp is dictated by the transfer function of the leaf, Tf, which is a function of leaf patch volume and ultimately of cell turgor pressure, Pc, as shown theoretically. The power function Tf=f(Pc) theoretically derived was experimentally confirmed by concomitant Pp and Pc measurements on intact leaflets of the liana Tetrastigma voinierianum under greenhouse conditions. Simultaneous Pp recordings on leaflets up to 10 m height above ground demonstrated that changes in Tf induced by Pc changes due to changes of microclimate and/or of the irrigation regime were sensitively reflected in corresponding changes of Pp. Analysis of the data show that transpirational water loss during the morning hours was associated with a transient rise in turgor pressure gradients within the leaflets. Subsequent recovery of turgescence during the afternoon was much faster than the preceding transpiration-induced water loss if the plants were well irrigated. Our data show the enormous potential of the leaf patch clamp pressure probe for leaf water studies including unravelling of the hydraulic communication between neighbouring leaves and over long distances within tall plants (trees)
Probing Yukawa Unification with K and B Mixing
We consider corrections to the unification of down-quark and charged-lepton
Yukawa couplings in supersymmetric GUTs, which links the large nu_tau-nu_mu
mixing angle to b -> s transitions. These corrections generically occur in
simple grand-unified models with small Higgs representations and affect s -> d
and b -> d transitions via the mixing of the corresponding right-handed
superpartners. On the basis of a specific SUSY-SO(10) model, we analyze the
constraints from K-Kbar and B-Bbar mixing on the additional
\tilde{d}_R-\tilde{s}_R rotation angle theta. We find that epsilon_K already
sets a stringent bound on theta, theta^{max}=O(1 degree), indicating a very
specific flavor structure of the correction operators. The impact of the large
neutrino mixings on the unitarity triangle analysis is also briefly discussed,
as well as their ability to account for the sizeable CP-violating phase
observed recently in B_s -> psi phi decays.Comment: 19 pages. Discussion in Sec. 5.2 slightly extended; minor numerical
modifications in Secs. 5.1 to 5.4, conclusions unchanged. Version to appear
in JHE
Virtual signatures of dark sectors in Higgs couplings
Where collider searches for resonant invisible particles loose steam, dark
sectors might leave their trace as virtual effects in precision observables.
Here we explore this option in the framework of Higgs portal models, where a
sector of dark fermions interacts with the standard model through a strong
renormalizable coupling to the Higgs boson. We show that precise measurements
of Higgs-gauge and triple Higgs interactions can probe dark fermions up to the
TeV scale through virtual corrections. Observation prospects at the LHC and
future lepton colliders are discussed for the so-called singlet-doublet model
of Majorana fermions, a generalization of the bino-higgsino scenario in
supersymmetry. We advocate a two-fold search strategy for dark sectors through
direct and indirect observables.Comment: 20 pages, 7 figures, 1 tabl
3D flow in the venom channel of a spitting cobra: do the ridges in the fangs act as fluid guide vanes?
The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels
Prolonged interglacial warmth during the Last Glacial in northern Europe
Few fossil-based environmental and climate records in northern Europe are dated to Marine Isotope Stage (MIS) 5a around 80 ka BP. We here present multiple environmental and climate proxies obtained from a lake sequence of MIS 5a age in the Sokli basin (northern Finland). Pollen/spores, plant macrofossils, NPPs (e.g. green algae), bryozoa, diatoms and chironomids allowed an exceptionally detailed reconstruction of aquatic and telmatic ecosystem successions related to the development of the Sokli Ice Lake and subsequent infilling of a relatively small and shallow lake confined to the Sokli basin. A regional vegetation development typical for the early half of an interglacial is recorded by the pollen, stomata and plant macrofossil data. Reconstructions of July temperatures based on pollen assemblages suffer from a large contribution of local pollen from the lake's littoral zone. Summer temperatures reaching present-day values, inferred for the upper part of the lake sequence, however, agree with the establishment of pine-dominated boreal forest indicated by the plant fossil data. Habitat preferences also influence the climate record based on chironomids. Nevertheless, the climate optima of the predominant intermediate- to warm-water chironomid taxa suggest July temperatures exceeding present-day values by up to several degrees, in line with climate inferences from a variety of aquatic and wetland plant indicator species. The disequilibrium between regional vegetation development and warm, insolation-forced summers is also reported for Early Holocene records from northern Fennoscandia. The MIS 5a sequence is the last remaining fossil-bearing deposit in the late Quaternary basin infill at Sokli to be studied using multi-proxy evidence. A unique detailed climate record for MIS 5 is now available for formerly glaciated northern Europe. Our studies indicate that interglacial conditions persisted into MIS 5a, in agreement with data for large parts of the European mainland, shortening the Last Glacial by some 50 ka to MIS 4-2.Peer reviewe
- …