12 research outputs found

    Morphological and histological organization of the pyriform appendage of the tetrabranchiate Nautilus pompilius (Cephalopoda, Mollusca).

    No full text
    The pyriform appendage, an organ only found in nautiloid cephalopods was investigated with histological, histochemical and ultrastructural methods in order to characterize the anatomical and the cytological structure of this organ. The pyriform appendage is situated within the genital septum and lies in close contact with the ventricle of the heart. The proximal side ends blindly near the gonad whereas the distal side is developed into a duct. The duct was observed to open into the mantle cavity in juvenile and adult Nautilus pompilius of both sexes. Injections of India ink in the heart demonstrate that the organ is supplied with hemolymph from an artery that extends from the heart. The pyriform appendage is a hollow organ consisting mainly of glandular tissue. The lumen is covered with a columnar epithelium, the tunica mucosa, consisting of only one cell type containing vacuoles with different inclusions. Underneath the tunica mucosa is the tunica muscularis, which is embedded in connective tissue and folded, enlarging the internal surface. A cuboidal tunica serosa surrounds this organ. The vacuoles and the secretory products contain neutral mucopolysaccharides, glycoproteins and glycolipids. Acid phosphatase and serotonin were localized in the tunica mucosa. Acetylcholinesterase, catecholamines and the tetrapeptide FMRF-amide were demonstrated within the nerve endings of the tunica muscularis indicating a dual "cholinergic-aminergic" neuroregulation, possibly modulated by FMRF-amide. These findings suggest that the pyriform appendage is not a rudimentary organ but instead has distinct biological functions in nautiloid cephalopods, possibly in intraspecific communication

    The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices

    Get PDF
    Abstract The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies
    corecore