464 research outputs found

    TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report

    Get PDF
    Water use has almost tripled over the past 50 years and in some regions the water demand already exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even small changes in water availability. The need for a scientifically-based assessment of the potential impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong for most parts of the world. Although the focus of such assessments has tended to be climate change, socio-economic changes can have as significant an impact on water availability across the four main use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal and consumption of water is expected to continue to grow substantially over the next 20-50 years (Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society and economies. One of the most needed improvements in Latin American river basin management is a higher level of detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too costly to be realised at more than a few locations, which means that modelled data are required for the rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8, and so WP3 was renamed to focus on hydrological modelling and hydrological extremes. The specific objectives of WP3 as set out in the Description of Work are

    Low-Temperature Scaling Regime of Random Ferromagnetic-Antiferromagnetic Spin Chains

    Full text link
    Using the Continuous Time Quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, and the specific heat of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in both quantities and support strongly the conjecture drawn from the approximative real-space renormalization group treatment. A statistical analysis scheme is developed which will be useful for the search scaling behavior in numerical and experimental data of random spin chains.Comment: 4 pages and 3 figure

    Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets

    Get PDF
    It is conjectured that the Haldane phase of the S=1 antiferromagnetic Heisenberg chain and the S=1/2S=1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain is stable against any strength of randomness, because of imposed breakdown of translational symmetry. This conjecture is confirmed by the density matrix renormalization group calculation of the string order parameter and the energy gap distribution.Comment: 4 Pages, 7 figures; Considerable revisions are made in abstract and main text. Final accepted versio

    Percolation Transition in the random antiferromagnetic spin-1 chain

    Full text link
    We give a physical description in terms of percolation theory of the phase transition that occurs when the disorder increases in the random antiferromagnetic spin-1 chain between a gapless phase with topological order and a random singlet phase. We study the statistical properties of the percolation clusters by numerical simulations, and we compute exact exponents characterizing the transition by a real-space renormalization group calculation.Comment: 9 pages, 4 encapsulated Postscript figures, REVTeX 3.

    Low Energy Properties of the Random Spin-1/2 Ferromagnetic-Antiferromagnetic Heisenberg Chain

    Full text link
    The low energy properties of the spin-1/2 random Heisenberg chain with ferromagnetic and antiferromagnetic interactions are studied by means of the density matrix renormalization group (DMRG) and real space renormalization group (RSRG) method for finite chains. The results of the two methods are consistent with each other. The deviation of the gap distribution from that of the random singlet phase and the formation of the large-spin state is observed even for relatively small systems. For a small fraction of the ferromagnetic bond, the effect of the crossover to the random singlet phase on the low temperature susceptibility and specific heat is discussed. The crossover concentration of the ferromagnetic bond is estimated from the numerical data.Comment: 11 pages, revtex, figures upon reques

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a KK^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    Blackbody emission from light interacting with an effective moving dispersive medium

    Get PDF
    Intense laser pulses excite a nonlinear polarisation response that may create an effective flowing medium and, under appropriate conditions, a blocking horizon for light. Here we analyse in detail the interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion properties. An analytical model based on a first Born-approximation is found to be in excellent agreement with numerical simulations based on Maxwell's equations and shows that when a blocking horizon is formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results, diamond is proposed as a promising candidate medium for future studies of Hawking emission from artificial, dispersive horizons

    Random Antiferromagnetic Spin-1/2 Chains with Competing Interactions

    Get PDF
    We study disordered antiferromagnetic spin-1/2 chains with nearest- and further-neighbor interactions using the real-space renormalization-group method. We find that the system supports two different phases, depending on the ratio of the strength between nearest-neighbor and further-neighbor interactions as well the bond randomness strength. For weak further neighbor coupling the system is in the familiar random singlet phase, while stronger further neighbor coupling drives the system to a large spin phase similar to that found in the study of random antiferromagnetic-ferromagnetic spin chains. The appearance of the large spin phase in the absence of ferromagnetic coupling is due to the frustration introduced by further neighboring couplings, and is unique to the disordered chains.Comment: 11 pages, 7 figure

    Numerical renormalization-group study of spin correlations in one-dimensional random spin chains

    Full text link
    We calculate the ground-state two-spin correlation functions of spin-1/2 quantum Heisenberg chains with random exchange couplings using the real-space renormalization group scheme. We extend the conventional scheme to take account of the contribution of local higher multiplet excitations in each decimation step. This extended scheme can provide highly accurate numerical data for large systems. The random average of staggered spin correlations of the chains with random antiferromagnetic (AF) couplings shows algebraic decay like 1/r21/r^2, which verifies the Fisher's analytic results. For chains with random ferromagnetic (FM) and AF couplings, the random average of generalized staggered correlations is found to decay more slowly than a power-law, in the form close to 1/ln(r)1/\ln(r). The difference between the distribution functions of the spin correlations of the random AF chains and of the random FM-AF chains is also discussed.Comment: 14 pages including 8 figures, REVTeX, submitted to Physical Review
    corecore