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It is conjectured that the Haldane phase of the S � 1 antiferromagnetic Heisenberg chain and the
S � 1�2 ferromagnetic-antiferromagnetic alternating Heisenberg chain is stable against any strength of
randomness, because of imposed breakdown of translational symmetry. This conjecture is confirmed
by the density matrix renormalization group calculation of the string order parameter and the energy
gap distribution.

PACS numbers: 75.10.Jm, 64.60.Ak, 75.40.Mg, 75.50.–y
In the recent studies of the quantum many body problem,
the ground state properties of the random quantum spin
systems have been attracting a renewed interest [1–15].
Among them, the effect of randomness on the spin gap
state of quantum spin chains has been extensively studied
theoretically and experimentally [5–15].

The real space renormalization group (RSRG) method
has been often used for the study of random quantum
spin chains. Using this method, it has been exactly
proved that the ground state of the S � 1�2 random
antiferromagnetic Heisenberg chain (RAHC) is the ran-
dom singlet (RS) state [1–3] irrespective of the strength
of randomness. Hyman et al. [5] have applied this
method to the S � 1�2 dimerized RAHC and have
shown that the dimerization is relevant to the RS phase.
They concluded that the ground state of this model
is the random dimer phase in which the string long
range order survives even in the presence of randomness
[5,8]. These results are numerically confirmed using the
density matrix renormalization group (DMRG) method
[4,9].

The effect of randomness on the Haldane phase is also
studied by Boechat and co-workers [6,7] and Hyman and
Yang [8] using the RSRG method for the original model
and the low energy effective model, respectively. These
authors predicted the possibility of the RS phase for strong
enough randomness. This problem has been further stud-
ied by Monthus and co-workers using the numerical analy-
sis of the RSRG equation for the square distribution of
exchange coupling [10]. They predicted that the Haldane-
RS phase transition takes place at a finite critical strength
of randomness. In the finite neighborhood of the critical
point, the Haldane phase belongs to the Griffith phase with
finite dynamical exponent z . 1. Hereafter, this phase
is called the random Haldane (RH) phase. On the other
hand, Nishiyama [11] has carried out the exact diagonal-
ization study of the S � 1 RAHC. He observed that the
Haldane phase is quite robust against randomness and the
string order remains finite unless the bond strength is dis-
tributed down to zero. He also carried out the quantum
Monte Carlo simulation [12] and found no random sin-
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glet phase even for strong randomness. On the contrary,
the quantum Monte Carlo simulation by Todo et al. [13]
suggested the presence of the RS phase for strong enough
randomness.

In the absence of randomness, the present author has
given a physical picture of the Haldane phase as the lim-
iting case of the S � 1�2 Heisenberg chain with bond
alternation in which the exchange coupling takes two dif-
ferent values J and JF alternatingly [16]. In the extreme
case of JF ! 2`, this system tends to the S � 1 an-
tiferromagnetic Heisenberg chain. The string order re-
mains long ranged over the whole range 2` , JF , J
and vanishes only at J � JF . The perfect string order is
realized for JF � 0. As discussed by Hyman et al. [5],
this is the direct consequence of the imposed break-
down of translational symmetry. Because the randomness
cannot recover the translational symmetry, the string order
is expected to remain finite over the whole range 2` ,

JF , J for any strength of randomness. Therefore we
may safely conjecture that the Haldane phase of the S � 1
RAHC should also remain stable for any strength of
randomness.

In the following, we confirm this conjecture using the
DMRG method [4,17] which allows the calculation of the
ground state and low energy properties of large systems
with high accuracy. We use the algorithm introduced in
Ref. [4]. This method has been successfully applied to the
spin-1�2 RAHC and weakly dimerized spin-1�2 RAHC in
which the system is gapless or has a very small gap in
the absence of randomness. Namely, in these systems the
characteristic energy scale of the regular system is much
smaller than the strength of randomness even for weak
randomness. Compared to these examples, the present
model is less dangerous because the regular system has
a finite gap and the characteristic energy scale of the
regular system is comparable to the strength of randomness
even in the worst case. We investigate not only the S �
1 RAHC but also the S � 1�2 random ferromagnetic-
antiferromagnetic alternating Heisenberg chain (RFAHC)
which interpolates the S � 1�2 dimerized RAHC and the
S � 1 RAHC.
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https://core.ac.uk/display/199681438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VOLUME 83, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 18 OCTOBER 1999
The Hamiltonian of the S � 1�2 RFAHC is given by

H �
NX

i�1

2JiS2i21S2i 1 2JFS2iS2i11, jSij � 1�2 ,

(1)

where JF � const and Ji’s are distributed randomly with
probability distribution,

P�Ji� �

Ω
1�W for 1 2 W�2 , Ji , 1 1 W�2
0 otherwise.

(2)

The width W of the distribution represents the strength
of randomness. The maximum randomness is defined by
W � 2, because the ferromagnetic bonds appear among
Ji’s for W . 2. It should be noted that the appearance
of the random ferromagnetic bonds can drive the system
to the completely different fixed point called large spin
phase [18]. Although the crossover between the random
Haldane phase and the large spin phase is an interesting
issue, we leave this problem outside the scope of the
present study.

The ground state of the regular counterpart of this
model (W � 0) is the Haldane phase with long range
string order defined by Ostr � liml,N!` Ostr�l; N� [16].
Here, Ostr �l; N� is the string correlation function in the
chain of length N defined only for odd l as

Ostr�l; N� � 24

*
exp

(
ip

2i1l11X
k�2i11

Sz
k

)+
. (3)

where �· · ·� denotes the ground state average. In the
presence of randomness, the string order is defined as the
sample average of Ostr . In the limit JF ! 2`, the string
order parameter (3) reduces to the one for the S � 1 chain
[19,20].

First, we calculate Ostr for the S � 1�2 RFAHC and
S � 1 RAHC using the DMRG method. The calculation
is performed with an open boundary condition. For
the S � 1�2 RFAHC, the bonds at both ends of the
chain are chosen to be antiferromagnetic to avoid the
quasidegeneracy of the ground state. The two boundary
spins are not counted in the number of spins 2N to
keep the consistency with the S � 1 chain (see below).
The average is taken over 200 samples with N # 29
(58 spins). The string order for the finite system Ostr �N�
is estimated from Ostr �l; N� averaged over six values of
l around l � N�2. The maximum number m of the
states kept in each step is 100. Similar calculation is
also performed for the S � 1 RAHC. In this case, the
additional spins with S � 1�2 are added at both ends of
the chain to remove the quasidegeneracy as proposed by
White and Huse for the regular chain [21]. The average
is taken over 400 samples with N # 42, where N is the
number of S � 1 spins. In this case, we take m � 80,
and Ostr �N� is estimated from Ostr�l; N� averaged over
12 values of l around l � N�2. We have confirmed
that these values of m are large enough from the m
dependence of the obtained values of Ostr �N�.
3298
Figure 1 shows the size dependence of the string order.
Typical sizes of the error bars estimated from the statistical
fluctuation among samples are less than the size of the
symbols unless they are explicitly shown in the figures.
The extrapolation is made under the following assumption:

Ostr�N� � Ostr 1 CN22h exp�2N�j� , (4)

where C and j are the constants to be determined by fitting.
The exponent 2h characterizes the size dependence of
the string order parameter at the RH-RS critical point
where j should diverge as Ostr �N� � N22h . This value
is estimated as follows: According to Monthus et al. [10],
at the critical point, Ostr �N� behaves as G22�32f� with
f �

p
5 while the logarithmic energy scale G varies

with the system size as G � N1�3. Therefore Ostr �N�
should scale as N22�32f��3 � N20.5092 at the critical point
resulting in 2h � 0.5092. It should be noted that the
low energy effective model of Hyman and Yang [8] also
applies for the S � 1�2 RFAHC with finite JF , 0 by
construction. The extrapolated values of Ostr are plotted
against 1�jJF j in Fig. 2. The string order is perfect at
JF � 0, where the ground state is a simple assembly of
local singlets [16] and should decrease with the increase
of jJF j. This behavior is clearly seen in Fig. 2. In this
extrapolation scheme, the string long range order remains
finite even at W � 2 for both S � 1�2 RFAHC and
S � 1 RAHC.

To check our extrapolation scheme, we also made
the extrapolation assuming the size dependence N22h

expected at the RH-RS critical point in Fig. 3 for S � 1
RAHC. In the RH phase, the extrapolated values thus
obtained can be understood as the lower bound. For
W $ 1.9, it is clear that the extrapolated values remain
definitely positive. Therefore the extrapolation using
Eq. (4) is appropriate in this region rather than the power
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FIG. 1. The size dependence of the string order parameter
Ostr �N� plotted against 1�N . The solid lines are fit by the
formula (4). The points with different values of W are depicted
by the same symbols for W � 1.6, 1.8, 1.9, and 2.0 from top
to bottom.
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FIG. 2. The JF dependence of the string order parameter Ostr
for W � 1.6, 1.8, 1.9, and 2.0 plotted against 1�jJF j.

law extrapolation. For W � 2, the extrapolated value is
very small but still positive (� 0.018).

Even if we do not rely on the values for W � 2
extrapolated using Eq. (4), we can convince ourselves of
the stability of the RH phase at W � 2 by the following
argument. In Fig. 4, we plot Ostr extrapolated using
Eq. (4) for S � 1 RAHC against 2 2 W for W # 1.9.
If we assume the critical behavior Ostr � �Wc 2 W�1.173

predicted by Monthus et al. [10], it is highly unlikely
that the string order disappears at finite values of Wc less
than 2.

Especially, this excludes the possibility Wc � 1.485
predicted by Monthus et al. [10]. In general, it is not
surprising that the RSRG method gives an incorrect value
for the critical point even if it gives correct values for
the critical exponents, because the RSRG transformation
is not exact at the initial stage of renormalization. Fur-
thermore, Monthus et al. [10] have neglected the effective
ferromagnetic coupling between the next nearest neigh-
bor interaction which appears after decimation of two
S � 1 spins. [See the discussion following Eq. (2.20) of
Ref. [10].] The neglect of this term is equivalent to the
introduction of the antiferromagnetic next nearest neigh-
bor interaction as a counterterm in the bare interaction. In
terms of the RFAHC, such interaction makes the distinc-
tion between the even and the odd bonds meaningless and

FIG. 3. The size dependence of the string order parameter
Ostr �N� for the S � 1 RAHC plotted against N20.5092.
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FIG. 4. The W dependence of the string order parameter Ostr
for the S � 1 RAHC.

can recover the translational symmetry leading to the de-
struction of the string order erroneously.

To further confirm the stability of the RH phase at the
most dangerous point JF ! 2` and W & 2, we calculate
the energy gap distribution for the S � 1 RAHC. In the
RH phase, the fixed point distribution of the energy gap D

is given by P�x� � P0 exp�2P0x�, where x � ln�V�D�,
V is the energy cutoff, and P0 is the nonuniversal constant
[8]. For the finite size systems, V scales as N21�P0 [8].
Therefore the dynamical exponent z is given by z � 1�P0.
Furthermore, this distribution implies

�ln�1�D�� � P21
0 lnN 1 const, (5)

s �
q

��lnD 2 �lnD��2� � P21
0 � z , (6)

for N ¿ 1. In Fig. 5, we plot �ln�1�D�� and s against
lnN . The error bars are estimated from the statistical fluc-
tuation among samples. The average is taken over more
than 100 samples with N # 50. For the most random case
W � 2, the average is taken over 219 samples. In this
case, we have taken m � 100 in most cases. For the con-
firmation of the accuracy, however, we recalculated with
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FIG. 5. The N dependence of �ln�1�D�� (open symbols) and
s (filled symbols) of the S � 1 RAHC plotted against ln N
for W � 1.8, 1.9, and 2.0. The horizontal arrows indicate the
values of 1�P0 estimated from d�ln�1�D���d lnN for W � 2,
1.9, and 1.8 from top to bottom.
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FIG. 6. The N dependence of �ln�1�D�� of the S � 1 RAHC
plotted (a) N1�3 and (b) N1�2 for W � 1.8, 1.9, and 2.0.

m � 150 for the samples with very small gap (less than
1023) but the difference was negligible. Actually, the lat-
ter data are also plotted in Fig. 5 for W � 2. But they are
almost covered by the data with m � 100 and are invisible
in Fig. 5. Therefore we may safely neglect the m depen-
dence for the less dangerous case W , 2.

It is evident that �ln�1�D�� behaves linearly with lnN ,
and s tends to a constant value as N ! `. We can
estimate the values of z �� 1�P0� from the gradient
d�ln�1�D���d lnN for large N . These values are indicated
by the arrows in Fig. 5 and they are consistent with those
estimated from s for large N within the error bars. On
the other hand, Figs. 6(a) and 6(b) show the plot of
�ln�1�D�� against N1�3 and N1�2 which are the expected
size dependence at the RH-RS critical point and within
the RS phase, respectively [10]. Both plots are less linear
compared to Fig. 5. These results confirm that the ground
state of the S � 1 RAHC remains in the RH phase down
to W � 2.

It should be also noted that the finite size effect
becomes serious only if one hopes to conclude the
presence of the RS phase. Even in the RH phase, the
string order or the gap distribution might behave RS-like
if the system size is not enough. Actually, the authors
of Ref. [10] needed an extremely large number of spins
to conclude that their calculation leads to the RS phase.
But the RS phase can never behave RH-like by the finite
size effect because the RS phase has divergent correlation
3300
length. Therefore, it is relatively easy to exclude the
possibility of the RS phase if the deviation from the
RS-like behavior is already observed for relatively small
systems, which is the case of the present calculation.

In summary, it is conjectured that the Haldane phase
of the S � 1 RAHC and the S � 1�2 RFAHC is stable
against any strength of randomness, because of the
imposed breakdown of translational symmetry. This
conjecture is confirmed by the DMRG calculation of the
string order and the energy gap distribution.

The numerical calculations have been performed using
the FACOM VPP500 at the Supercomputer Center, Insti-
tute for Solid State Physics, University of Tokyo. The
author thanks H. Takayama and S. Todo for useful dis-
cussion and comments. This work is partially supported
by the Grant-in-Aid for Scientific Research from the Min-
istry of Education, Science, Sports and Culture.

[1] S.-k. Ma, C. Dasgupta, and C. K. Hu, Phys. Rev. Lett. 43,
1434 (1979); C. Dasgupta and S.-k. Ma, Phys. Rev. B 22,
1305 (1980).

[2] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 (1982).
[3] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
[4] K. Hida, J. Phys. Soc. Jpn. 65, 895 (1996); J. Phys. Soc.

Jpn. 65, 3412(E) (1996).
[5] R. A. Hyman, K. Yang, R. N. Bhatt, and S. M. Girvin,

Phys. Rev. Lett. 76, 839 (1996).
[6] B. Boechat, A. Saguia, and M. A. Continentino, Solid

State Commun. 98, 411 (1996).
[7] M. A. Constantino, J. C. Fernandes, R. B. Guimarães,

B. Boechat, H. A. Borges, J. V. Vararelli, E. Haanappel,
A. Lacerda, and P. R. J. Silva, Philos. Mag. B 73, 601
(1996).

[8] R. A. Hyman and K. Yang, Phys. Rev. Lett. 78, 1783
(1997).

[9] K. Hida, J. Phys. Soc. Jpn. 66, 3237 (1997).
[10] C. Monthus, O. Golinelli, and Th. Jolicœur, Phys. Rev.

Lett. 79, 3254 (1997).
[11] Y. Nishiyama, Physica (Amsterdam) 252A, 35 (1998);

258A, 499(E) (1998).
[12] Y. Nishiyama, Eur. J. Phys. B 6, 335 (1998).
[13] S. Todo, K. Kato, and H. Takayama, cond-mat/9803088;

(private communication).
[14] L. P. Regnault, J. P. Renard, G. Dhalenne, and A.

Revcolevschi, Europhys. Lett. 32, 579 (1995).
[15] M. Hase, K. Uchinokura, R. J. Birgeneau, K. Hirota, and

G. Shirane, J. Phys. Soc. Jpn. 65, 1392 (1996).
[16] K. Hida, Phys. Rev. B 45, 2207 (1992).
[17] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev.

B 48, 10 345 (1993).
[18] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee,

Phys. Rev. Lett. 75, 4302 (1995); Phys. Rev. B 55, 12 578
(1997).

[19] M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709
(1989).

[20] H. Tasaki, Phys. Rev. Lett. 66, 798 (1991).
[21] S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).


