21 research outputs found

    Dynamic Effective Connectivity of Inter-Areal Brain Circuits

    Get PDF
    Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question “Which areas cause the present activity of which others?”. Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as well the basis for the self-organized control of this “communication-through-coherence”, making thus possible a fast “on-demand” reconfiguration of global information routing modalities

    Frontal-to-Parietal Top-Down Causal Streams along the Dorsal Attention Network Exclusively Mediate Voluntary Orienting of Attention

    Get PDF
    Previous effective connectivity analyses of functional magnetic resonance imaging (fMRI) have revealed dynamic causal streams along the dorsal attention network (DAN) during voluntary attentional control in the human brain. During resting state, however, fMRI has shown that the DAN is also intrinsically configured by functional connectivity, even in the absence of explicit task demands, and that may conflict with effective connectivity studies. To resolve this contradiction, we performed an effective connectivity analysis based on partial Granger causality (pGC) on event-related fMRI data during Posner's cueing paradigm while optimizing experimental and imaging parameters for pGC analysis. Analysis by pGC can factor out exogenous or latent influences due to unmeasured variables. Typical regions along the DAN with greater activation during orienting than withholding of attention were selected as regions of interest (ROIs). pGC analysis on fMRI data from the ROIs showed that frontal-to-parietal top-down causal streams along the DAN appeared during (voluntary) orienting, but not during other, less-attentive and/or resting-like conditions. These results demonstrate that these causal streams along the DAN exclusively mediate voluntary covert orienting. These findings suggest that neural representations of attention in frontal regions are at the top of the hierarchy of the DAN for embodying voluntary attentional control

    Physiological performance of seeds and level of herbicide residues depending on application of 2.4-D in wheat.

    Get PDF
    Made available in DSpace on 2019-03-02T00:43:45Z (GMT). No. of bitstreams: 1 ID445412018v36e018161021PD.pdf: 795517 bytes, checksum: 98b39ab3f9a59929c64ae437ee438e4f (MD5) Previous issue date: 2019-03-01bitstream/item/193610/1/ID44541-2018v36e018161021PD.pdfTítulo em português: Desempenho fisiológico de sementes e nível de resíduo em razão da aplicação de 2,4-D no trigo

    Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition

    Full text link
    [EN] Errors indicate the need to adjust attention for improved future performance. Detecting errors is thus a fundamental step to adjust and control attention. These functions have been associated with the dorsal anterior cingulate cortex (dACC), predicting that dACC cells should track the specific processing states giving rise to errors in order to identify which processing aspects need readjustment. Here, we tested this prediction by recording cells in the dACC and lateral prefrontal cortex (latPFC) of macaques performing an attention task that dissociated 3 processing stages. We found that, across prefrontal subareas, the dACC contained the largest cell populations encoding errors indicating (1) failures of inhibitory control of the attentional focus, (2) failures to prevent bottom-up distraction, and (3) lapses when implementing a choice. Error-locked firing in the dACC showed the earliest latencies across the PFC, emerged earlier than reward omission signals, and involved a significant proportion of putative inhibitory interneurons. Moreover, early onset error-locked response enhancement in the dACC was followed by transient prefrontal-cingulate inhibition, possibly reflecting active disengagement from task processing. These results suggest a functional specialization of the dACC to track and identify the actual processes that give rise to erroneous task outcomes, emphasizing its role to control attentional performance.This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Ministry of Economic Development and Innovation (MEDI) (T.W.). S.W. was funded by the "Deutsche Akademie der Naturforscher Leopoldina" (LPDS 2012-08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Shen, C.; Ardid-Ramírez, JS.; Kaping, D.; Westendorff, S.; Everling, S.; Womelsdorf, T. (2015). Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cerebral Cortex. 25(8):2213-2228. https://doi.org/10.1093/cercor/bhu028S22132228258Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14(10), 1338-1344. doi:10.1038/nn.2921Amiez, C., Joseph, J.-P., & Procyk, E. (2005). Anterior cingulate error-related activity is modulated by predicted reward. European Journal of Neuroscience, 21(12), 3447-3452. doi:10.1111/j.1460-9568.2005.04170.xAsaad, W. F., & Eskandar, E. N. (2008). Achieving behavioral control with millisecond resolution in a high-level programming environment. Journal of Neuroscience Methods, 173(2), 235-240. doi:10.1016/j.jneumeth.2008.06.003Asaad, W. F., & Eskandar, E. N. (2008). A flexible software tool for temporally-precise behavioral control in Matlab. Journal of Neuroscience Methods, 174(2), 245-258. doi:10.1016/j.jneumeth.2008.07.014Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210-224. doi:10.1016/j.tins.2011.02.003Barbas, H., & Zikopoulos, B. (2007). The Prefrontal Cortex and Flexible Behavior. The Neuroscientist, 13(5), 532-545. doi:10.1177/1073858407301369BOTVINICK, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366. doi:10.3758/cabn.7.4.356Bryden, D. W., Johnson, E. E., Tobia, S. C., Kashtelyan, V., & Roesch, M. R. (2011). Attention for Learning Signals in Anterior Cingulate Cortex. Journal of Neuroscience, 31(50), 18266-18274. doi:10.1523/jneurosci.4715-11.2011Cavanagh, J. F., Gründler, T. O. J., Frank, M. J., & Allen, J. J. B. (2010). Altered cingulate sub-region activation accounts for task-related dissociation in ERN amplitude as a function of obsessive-compulsive symptoms. Neuropsychologia, 48(7), 2098-2109. doi:10.1016/j.neuropsychologia.2010.03.031Cheng, M.-Y., & Hall, P. (1998). Calibrating the excess mass and dip tests of modality. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 579-589. doi:10.1111/1467-9868.00141Corbetta, M., & Shulman, G. L. (2011). Spatial Neglect and Attention Networks. Annual Review of Neuroscience, 34(1), 569-599. doi:10.1146/annurev-neuro-061010-113731Debener, S. (2005). Trial-by-Trial Coupling of Concurrent Electroencephalogram and Functional Magnetic Resonance Imaging Identifies the Dynamics of Performance Monitoring. Journal of Neuroscience, 25(50), 11730-11737. doi:10.1523/jneurosci.3286-05.2005Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95(24), 14529-14534. doi:10.1073/pnas.95.24.14529Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron, 76(6), 1057-1070. doi:10.1016/j.neuron.2012.12.002Everling, S., & Johnston, K. (2013). Control of the superior colliculus by the lateral prefrontal cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1628), 20130068. doi:10.1098/rstb.2013.0068Godlove, D. C., Emeric, E. E., Segovis, C. M., Young, M. S., Schall, J. D., & Woodman, G. F. (2011). Event-Related Potentials Elicited by Errors during the Stop-Signal Task. I. Macaque Monkeys. Journal of Neuroscience, 31(44), 15640-15649. doi:10.1523/jneurosci.3349-11.2011Gründler, T. O. J., Cavanagh, J. F., Figueroa, C. M., Frank, M. J., & Allen, J. J. B. (2009). Task-related dissociation in ERN amplitude as a function of obsessive–compulsive symptoms. Neuropsychologia, 47(8-9), 1978-1987. doi:10.1016/j.neuropsychologia.2009.03.010Hartigan, J. A., & Hartigan, P. M. (1985). The Dip Test of Unimodality. The Annals of Statistics, 13(1). doi:10.1214/aos/1176346577Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise Signals in Anterior Cingulate Cortex: Neuronal Encoding of Unsigned Reward Prediction Errors Driving Adjustment in Behavior. Journal of Neuroscience, 31(11), 4178-4187. doi:10.1523/jneurosci.4652-10.2011Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). Fictive Reward Signals in the Anterior Cingulate Cortex. Science, 324(5929), 948-950. doi:10.1126/science.1168488Henderson, D. J., Parmeter, C. F., & Russell, R. R. (2008). Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests. Journal of Applied Econometrics, 23(5), 607-638. doi:10.1002/jae.1023Holroyd, C. B., & Coles, M. G. H. (2008). Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex, 44(5), 548-559. doi:10.1016/j.cortex.2007.08.013Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 59-70. doi:10.3758/cabn.9.1.59Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122-128. doi:10.1016/j.tics.2011.12.008Hutchison, R. M., Womelsdorf, T., Gati, J. S., Leung, L. S., Menon, R. S., & Everling, S. (2012). Resting-State Connectivity Identifies Distinct Functional Networks in Macaque Cingulate Cortex. Cerebral Cortex, 22(6), 1294-1308. doi:10.1093/cercor/bhr181Hyman JM Hasselmo ME Seamans JK . 2011. What is the functional relevance of prefrontal cortex entrainment to hippocampal theta rhythms? Front Neurosci. 5:24.Hyman, J. M., Whitman, J., Emberly, E., Woodward, T. S., & Seamans, J. K. (2012). Action and Outcome Activity State Patterns in the Anterior Cingulate Cortex. Cerebral Cortex, 23(6), 1257-1268. doi:10.1093/cercor/bhs104Ito, S., Stuphorn, V., Brown, J. W., & Schall, J. D. (2003). Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding. Science, 302(5642), 120-122. doi:10.1126/science.1087847Johnston, K., Levin, H. M., Koval, M. J., & Everling, S. (2007). Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching. Neuron, 53(3), 453-462. doi:10.1016/j.neuron.2006.12.023Kaping, D., Vinck, M., Hutchison, R. M., Everling, S., & Womelsdorf, T. (2011). Specific Contributions of Ventromedial, Anterior Cingulate, and Lateral Prefrontal Cortex for Attentional Selection and Stimulus Valuation. PLoS Biology, 9(12), e1001224. doi:10.1371/journal.pbio.1001224Kennerley, S. W., Behrens, T. E. J., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14(12), 1581-1589. doi:10.1038/nn.2961Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947. doi:10.1038/nn1724Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior Cingulate Conflict Monitoring and Adjustments in Control. Science, 303(5660), 1023-1026. doi:10.1126/science.1089910Khamassi, M., Enel, P., Dominey, P. F., & Procyk, E. (2013). Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters. Decision Making - Neural and Behavioural Approaches, 441-464. doi:10.1016/b978-0-444-62604-2.00022-8Lachenbruch, P. A. (2002). Analysis of data with excess zeros. Statistical Methods in Medical Research, 11(4), 297-302. doi:10.1191/0962280202sm289raMatsumoto, M., Matsumoto, K., Abe, H., & Tanaka, K. (2007). Medial prefrontal cell activity signaling prediction errors of action values. Nature Neuroscience, 10(5), 647-656. doi:10.1038/nn1890Medalla, M., & Barbas, H. (2010). Anterior Cingulate Synapses in Prefrontal Areas 10 and 46 Suggest Differential Influence in Cognitive Control. Journal of Neuroscience, 30(48), 16068-16081. doi:10.1523/jneurosci.1773-10.2010Medalla, M., & Barbas, H. (2009). Synapses with Inhibitory Neurons Differentiate Anterior Cingulate from Dorsolateral Prefrontal Pathways Associated with Cognitive Control. Neuron, 61(4), 609-620. doi:10.1016/j.neuron.2009.01.006Miller, E. K., & Cohen, J. D. (2001). An Integrative Theory of Prefrontal Cortex Function. Annual Review of Neuroscience, 24(1), 167-202. doi:10.1146/annurev.neuro.24.1.167Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal «theta». Progress in Neurobiology, 86(3), 156-185. doi:10.1016/j.pneurobio.2008.09.005Morecraft, R. J., Stilwell-Morecraft, K. S., Cipolloni, P. B., Ge, J., McNeal, D. W., & Pandya, D. N. (2012). Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey. Brain Research Bulletin, 87(4-5), 457-497. doi:10.1016/j.brainresbull.2011.12.005Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453-459. doi:10.1016/j.tics.2011.07.011Narayanan, N. S., Cavanagh, J. F., Frank, M. J., & Laubach, M. (2013). Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 16(12), 1888-1895. doi:10.1038/nn.3549Narayanan, N. S., & Laubach, M. (2008). Neuronal Correlates of Post-Error Slowing in the Rat Dorsomedial Prefrontal Cortex. Journal of Neurophysiology, 100(1), 520-525. doi:10.1152/jn.00035.2008Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011, 1-9. doi:10.1155/2011/156869Passingham RE Wise SP . 2012. The neurobiology of the prefrontal cortex: anatomy, evolution, and the origin of insight. Oxford: Oxford University Press.Petrides, M., & Pandya, D. N. (2007). Efferent Association Pathways from the Rostral Prefrontal Cortex in the Macaque Monkey. Journal of Neuroscience, 27(43), 11573-11586. doi:10.1523/jneurosci.2419-07.2007Phillips, J. M., Vinck, M., Everling, S., & Womelsdorf, T. (2013). A Long-Range Fronto-Parietal 5- to 10-Hz Network Predicts «Top-Down» Controlled Guidance in a Task-Switch Paradigm. Cerebral Cortex, 24(8), 1996-2008. doi:10.1093/cercor/bht050Procyk, E., & Goldman-Rakic, P. S. (2006). Modulation of Dorsolateral Prefrontal Delay Activity during Self-Organized Behavior. Journal of Neuroscience, 26(44), 11313-11323. doi:10.1523/jneurosci.2157-06.2006Quilodran, R., Rothé, M., & Procyk, E. (2008). Behavioral Shifts and Action Valuation in the Anterior Cingulate Cortex. Neuron, 57(2), 314-325. doi:10.1016/j.neuron.2007.11.031Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biological Psychology, 93(3), 377-385. doi:10.1016/j.biopsycho.2013.04.007Rothe, M., Quilodran, R., Sallet, J., & Procyk, E. (2011). Coordination of High Gamma Activity in Anterior Cingulate and Lateral Prefrontal Cortical Areas during Adaptation. Journal of Neuroscience, 31(31), 11110-11117. doi:10.1523/jneurosci.1016-11.2011Saleem KS Miller B Price JL . 2013. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey. J Comp Neurol. doi:10.1002/cne.23498 .SALLET, J., QUILODRAN, R., ROTHE, M., VEZOLI, J., JOSEPH, J.-P., & PROCYK, E. (2007). Expectations, gains, and losses in the anterior cingulate cortex. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 327-336. doi:10.3758/cabn.7.4.327Seo, H., & Lee, D. (2007). Temporal Filtering of Reward Signals in the Dorsal Anterior Cingulate Cortex during a Mixed-Strategy Game. Journal of Neuroscience, 27(31), 8366-8377. doi:10.1523/jneurosci.2369-07.2007Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The Expected Value of Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron, 79(2), 217-240. doi:10.1016/j.neuron.2013.07.007Tanji, J., & Hoshi, E. (2008). Role of the Lateral Prefrontal Cortex in Executive Behavioral Control. Physiological Reviews, 88(1), 37-57. doi:10.1152/physrev.00014.2007Totah, N. K. B., Kim, Y. B., Homayoun, H., & Moghaddam, B. (2009). Anterior Cingulate Neurons Represent Errors and Preparatory Attention within the Same Behavioral Sequence. Journal of Neuroscience, 29(20), 6418-6426. doi:10.1523/jneurosci.1142-09.2009Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex. Journal of the American Medical Informatics Association, 8(5), 443-459. doi:10.1136/jamia.2001.0080443Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences, 107(11), 5248-5253. doi:10.1073/pnas.090619410

    Physiological Performance of Seeds and Level of Herbicide Residues Depending on Application of 2.4-D in Wheat

    No full text
    <div><p>ABSTRACT: Horseweed control through application of 2.4-D in the winter season is an alternative to manage biotypes resistant to herbicides that belong to other mechanisms of action. The objectives of this study were to assess the physiological quality of wheat seeds and determine the rate of 2.4-D residue, as function of application stages and herbicide rates. The treatments were arranged in factorial scheme, with three application stages (flowering, soft dough and hard dough), and four 2.4-D rates (0; 504; 1,008 and 2,015 g a.i. ha-1). The application of 2.4-D in the wheat crop changed physiological seed quality by increased the rate and total percentage of germination. The application of 2.4-D resulted in herbicide accumulation in seeds, especially when application was carried out at the soft dough stage. Also, the increase in herbicide rate increased the level of residue in the seeds. However, regardless of stage of application for 2.4-D and herbicide rate in use, the values of residue found in the seeds were below the allowed maximum limit.</p></div
    corecore