627 research outputs found

    On the Swimming of \textit{Dictyostelium} amoebae

    Full text link
    Traditionally, the primary mode for locomotion of amoeboid cells was thought to be crawling on a substrate. Recently, it has been experimentally shown that \textit{Dictostelium} amoeba and neutrophils can also swim in a directed fashion. The mechanisms for amoeboid crawling and swimming were hypothesized to be similar. In this letter, we show that the shape changes generated by a crawling \textit{D. discoideum} cell are consistent with swimming.Comment: letter submitted to PNA

    Plasmodium yoelii infection of BALB/c mice results in expansion rather than induction of CD4+ Foxp3+ regulatory T cells

    Get PDF
    Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp‐1(+) and Foxp3(+) Nrp‐1(−) Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(−) T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells

    Collagen 11a1 is Indirectly Activated by Lymphocyte Enhancer-Binding Factor 1 (Lef1) and Negatively Regulates Osteoblast Maturation

    Get PDF
    Alpha 1 (XI) collagen (Col11a1) is essential for normal skeletal development. Mutations in Col11a1 cause Marshall and Stickler syndromes, characterized by craniofacial abnormalities, nearsightedness and hearing abnormalities. Despite its link to human diseases, few studies have characterized the factors that control Col11a1 transcription. We previously identified Col11a1 as a differentially expressed gene in Lef1-suppressed MC3T3 preosteoblasts. Here we report that Lef1 activates the Col11a1 promoter. This activation is dependent upon the DNA binding domain of Lef1, but does not require the ß-catenin interaction domain, suggesting that it is not responsive to Wnt signals. Targeted deletion of Col11a1 with an antisense morpholino accelerated osteoblastic differentiation and mineralization in C2C12 cells, similar to what was observed in Lef1-suppressed MC3T3 cells. Moreover incubation with a purified Col11a1 N-terminal fragment, V1B, prevented alkaline phosphatase expression in MC3T3 and C2C12 cells. These results suggest that Lef1 is an activator of the Col11a1 promoter and that Col11a1 suppresses terminal osteoblast differentiation

    Oral anticoagulant use in cardiovascular disorders: a perspective on present and potential indications for rivaroxaban.

    Get PDF
    BACKGROUND: Four nonvitamin K antagonist oral anticoagulants (NOACs) have been approved for use in various cardiovascular indications. The direct thrombin inhibitor dabigatran and the direct factor Xa inhibitors apixaban, edoxaban, and rivaroxaban are now increasingly used in clinical practice. For some of these agents, available data from real-world studies support the efficacy and safety data in phase III clinical trials. OBJECTIVES: This review aims to summarize the current status of trials and observational studies of oral anticoagulant use over the spectrum of cardiovascular disorders (excluding venous thrombosis), provide a reference source beyond stroke prevention for atrial fibrillation (AF) and examine the potential for novel applications in the cardiovascular field. METHODS: We searched the recent literature for data on completed and upcoming trials of oral anticoagulants with a particular focus on rivaroxaban. RESULTS: Recent data in specific patient subgroups, such as patients with AF undergoing catheter ablation or cardioversion, have led to an extended approval for rivaroxaban, whereas the other NOACs have ongoing or recently completed trials in this setting. However, there are unmet medical needs for several arterial thromboembolic-related conditions, including patients with: AF and acute coronary syndrome, AF and coronary artery disease undergoing elective percutaneous coronary intervention, coronary artery disease and peripheral artery disease, implanted cardiac devices, and embolic stroke of unknown source. CONCLUSION: NOACs may provide alternative treatment options in areas of unmet need, and numerous studies are underway to assess their benefit-risk profiles in these settings

    Signatures of human regulatory T cells: an encounter with old friends and new players

    Get PDF
    BACKGROUND: Naturally occurring CD4(+)CD25(+ )regulatory T cells (T(Reg)) are involved in the control of autoimmune diseases, transplantation tolerance, and anti-tumor immunity. Thus far, genomic studies on T(Reg )cells were restricted to murine systems, and requirements for their development, maintenance, and mode of action in humans are poorly defined. RESULTS: To improve characterization of human T(Reg )cells, we compiled a unique microarray consisting of 350 T(Reg )cell associated genes (Human T(Reg )Chip) based on whole genome transcription data from human and mouse T(Reg )cells. T(Reg )cell specific gene signatures were created from 11 individual healthy donors. Statistical analysis identified 62 genes differentially expressed in T(Reg )cells, emphasizing some cross-species differences between mice and humans. Among them, several 'old friends' (including FOXP3, CTLA4, and CCR7) that are known to be involved in T(Reg )cell function were recovered. Strikingly, the vast majority of genes identified had not previously been associated with human T(Reg )cells (including LGALS3, TIAF1, and TRAF1). Most of these 'new players' however, have been described in the pathogenesis of autoimmunity. Real-time RT-PCR of selected genes validated our microarray results. Pathway analysis was applied to extract signaling modules underlying human T(Reg )cell function. CONCLUSION: The comprehensive set of genes reported here provides a defined starting point to unravel the unique characteristics of human T(Reg )cells. The Human T(Reg )Chip constructed and validated here is available to the scientific community and is a useful tool with which to study the molecular mechanisms that orchestrate T(Reg )cells under physiologic and diseased conditions

    Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Get PDF
    BACKGROUND: Type I interferon (IFN-I) predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-alpha). IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-alpha-treatment occur independently of neutropenia. METHODS: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV). Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar(-/-) mice under the influence of LCMV or poly(I:C). RESULTS: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C)-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. CONCLUSION: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed

    Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals

    Get PDF
    We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters

    Modulating gut microbiota in a mouse model of Graves' orbitopathy and its impact on induced disease

    Get PDF
    BACKGROUND: Graves' disease (GD) is an autoimmune condition in which autoantibodies to the thyrotropin receptor (TSHR) cause hyperthyroidism. About 50% of GD patients also have Graves' orbitopathy (GO), an intractable disease in which expansion of the orbital contents causes diplopia, proptosis and even blindness. Murine models of GD/GO, developed in different centres, demonstrated significant variation in gut microbiota composition which correlated with TSHR-induced disease heterogeneity. To investigate whether correlation indicates causation, we modified the gut microbiota to determine whether it has a role in thyroid autoimmunity. Female BALB/c mice were treated with either vancomycin, probiotic bacteria, human fecal material transfer (hFMT) from patients with severe GO or ddH2O from birth to immunization with TSHR-A subunit or beta-galactosidase (βgal; age ~ 6 weeks). Incidence and severity of GD (TSHR autoantibodies, thyroid histology, thyroxine level) and GO (orbital fat and muscle histology), lymphocyte phenotype, cytokine profile and gut microbiota were analysed at sacrifice (~ 22 weeks). RESULTS: In ddH2O-TSHR mice, 84% had pathological autoantibodies, 67% elevated thyroxine, 77% hyperplastic thyroids and 70% orbital pathology. Firmicutes were increased, and Bacteroidetes reduced relative to ddH2O-βgal; CCL5 was increased. The random forest algorithm at the genus level predicted vancomycin treatment with 100% accuracy but 74% and 70% for hFMT and probiotic, respectively. Vancomycin significantly reduced gut microbiota richness and diversity compared with all other groups; the incidence and severity of both GD and GO also decreased; reduced orbital pathology correlated positively with Akkermansia spp. whilst IL-4 levels increased. Mice receiving hFMT initially inherited their GO donors' microbiota, and the severity of induced GD increased, as did the orbital brown adipose tissue volume in TSHR mice. Furthermore, genus Bacteroides, which is reduced in GD patients, was significantly increased by vancomycin but reduced in hFMT-treated mice. Probiotic treatment significantly increased CD25+ Treg cells in orbital draining lymph nodes but exacerbated induced autoimmune hyperthyroidism and GO. CONCLUSIONS: These results strongly support a role for the gut microbiota in TSHR-induced disease. Whilst changes to the gut microbiota have a profound effect on quantifiable GD endocrine and immune factors, the impact on GO cellular changes is more nuanced. The findings have translational potential for novel, improved treatments. Video abstract
    • …
    corecore