2,389 research outputs found

    Bose-Einstein Condensation and Spin Mixtures of Optically Trapped Metastable Helium

    Full text link
    We report the realization of a BEC of metastable helium-4 atoms (4He*) in an all optical potential. Up to 10^5 spin polarized 4He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode micro-channel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin state combinations of 4He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin state resolved two-body inelastic loss rate coefficients in the optical trap

    A solid-state digital temperature recorder for space use

    Get PDF
    A solid-state, digital, temperature recorder has been developed for use in space experiments. The recorder is completely self-contained and includes a temperature sensor; all necessary electronics for signal conditioning, processing, storing, control and timing; and a battery power supply. No electrical interfacing with the particular spacecraft on which the unit is used is required. The recorder is small, light, and sturdy, and has no moving parts. It uses only biocompatible materials and has passed vibration and shock spaceflight qualification tests. The unit is capable of storing 2048, -10 to +45 C, 8-bit temperature measurements taken at intervals selectable by factors of 2 from 1.875 to 240 min; data can be retained for at least 6 months. The basic recorder can be simplified to accommodate a variety of applications by adding memory to allow more data to be recorded, by changing the front end to permit measurements other than temperature to be made, and by using different batteries to realize various operating periods. Stored flight data are read out from the recorder by means of a ground read-out unit

    A long-range and long-life telemetry data-acquisition system for heart rate and multiple body temperatures from free-ranging animals

    Get PDF
    The system includes an implantable transmitter, external receiver-retransmitter collar, and a microprocessor-controlled demodulator. The size of the implant is suitable for animals with body weights of a few kilograms or more; further size reduction of the implant is possible. The ECG is sensed by electrodes designed for internal telemetry and to reduce movement artifacts. The R-wave characteristics are then specifically selected to trigger a short radio frequency pulse. Temperatures are sensed at desired locations by thermistors and then, based on a heartbeat counter, transmitted intermittently via pulse interval modulation. This modulation scheme includes first and last calibration intervals for a reference by ratios with the temperature intervals to achieve good accuracy even over long periods. Pulse duration and pulse sequencing are used to discriminate between heart rate and temperature pulses as well as RF interference

    Ionization rates in a Bose-Einstein condensate of metastable Helium

    Full text link
    We have studied ionizing collisions in a BEC of He*. Measurements of the ion production rate combined with measurements of the density and number of atoms for the same sample allow us to estimate both the 2 and 3-body contributions to this rate. A comparison with the decay of the number of condensed atoms in our magnetic trap, in the presence of an rf-shield, indicates that ionizing collisions are largely or wholly responsible for the loss. Quantum depletion makes a substantial correction to the 3-body rate constant.Comment: 4 pages, 3 figure

    Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates

    Full text link
    We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.Comment: A few typos have been correcte

    Theoretical spectra and energetics for c-C3HC2H, l-C5H2, and bipyramidal D3h C5H2

    Get PDF
    The recent astronomical detection of c-C3HC2H and l-C5H2 has led to increased interest in C5H2 isomers and their relative stability. The present work provides the first complete list of anharmonic vibrational spectral data with infrared intensities for three such isomers as well as including the first set of rotational data for the bipyramidal C5H2 isomer allowing for these molecules to serve as potential tracers of interstellar carbon. All three isomers have fundamental vibrational frequencies with at least one notably intense fundamental frequency. The l-C5H2 isomer has, by far, the highest intensities out of the three isomers at 2076.3 cm−1 (738 km mol−1) and 1887.5 cm−1 (182 km mol −1). The c-C3HC2H isomer has one intense peak at 3460.6 cm−1 (84 km mol−1), and the bipyramidal C5H2 isomer has one intense peak at 489.3 cm−1 (78 km mol−1). The relative intensities highlight that while l-C5H2 is not the lowest energy isomer, its notable intensities should make it more detectable in the infrared than the lower energy c-C3HC2H form. The bipyramidal isomer is firmly established here to lie 44.98 kcal mol−1 above the cyclic form. The explicitly correlated coupled cluster rovibrational spectral data presented herein should assist with future laboratory studies of these C5H2 isomers and aid in detection in astronomical environments especially through the newly operational James Webb Space Telescope

    Specular reflection of matter waves from a rough mirror

    Get PDF
    We have made a high resolution study of the specularity of the atomic reflection from an evanescent wave mirror using velocity selective Raman transitions. We have observed a double structure in the velocity distribution after reflection: a peak consistent with specular reflection and a diffuse reflection pedestal, whose contribution decreases rapidly with increasing detuning. The diffuse reflection is due to two distinct effects: spontaneous emission in the evanescent wave and a roughness in the evanescent wave potential whose amplitude is smaller than the de Broglie wavelength of the reflected atoms

    Describing interruptions, multi-tasking and task-switching in the community pharmacy: A qualitative study in England

    Get PDF
    Background: There is growing evidence base around interruptions and distractions in the community pharmacy setting. There is also evidence to suggest these practices may be associated with dispensing errors. Up to date, qualitative research on this subject is limited. Objective: To explore interruptions and distractions in the community setting; utilising an ethnographic approach to be able to provide a detailed description of the circumstances surrounding such practices. Setting: Community pharmacies in England, July to October 2011. Method: An ethnographic approach was taken. Non participant, unstructured observations were utilised to make records of pharmacists’ every activities. Case studies were formed by combining field notes with detailed information on pharmacists and their respective pharmacy businesses. Content analysis was undertaken both manually and electronically, utilising NVivo 10. Results: Response rate was 12% (n=11). Over fifteen days, a total of 123 hours and 58 minutes of observations were recorded in 11 separate pharmacies of 11 individual pharmacists. The sample was evenly split by gender (female n=6; male n=5) and pharmacy ownership (independent n=5; multiple n=6). Employment statuses included employee pharmacists (n=6), owners (n=4) and a locum (n=1). Average period of registration as a pharmacist was 19 years (range 5-39 years). Average prescriptions busyness of pharmacies ranged from 2,600 – 24,000 items dispensed per month. Two key themes were: “Interruptions and task-switching” and “distractions and multi-tasking.” All observed pharmacists’ work was dominated by interruptions, task-switches, distractions and multi-tasking, often to manage a barrage of conflicting demands. These practices were observed to be part of a deep-rooted culture in the community setting. Directional work maps illustrated the extent and direction of task switching employed by pharmacists. Conclusions: In this study pharmacists’ working practices were permeated by interruptions and multi-tasking. These practices are inefficient and potentially reduce patient safety in terms of dispensing accuracy

    Conforming finite element methods for the clamped plate problem

    Get PDF
    Finite element methods for solving biharmonic boundary value problems are considered. The particular problem discussed is that of a clamped thin plate. This problem is reformulated in a weak, form in the Sobolev space Techniques for setting up conforming trial Functions are utilized in a Galerkin technique to produce finite element solutions. The shortcomings of various trial function formulations are discussed, and a macro—element approach to local mesh refinement using rectangular elements is given

    Violation of the Cauchy-Schwarz inequality with matter waves

    Get PDF
    The Cauchy-Schwarz (CS) inequality -- one of the most widely used and important inequalities in mathematics -- can be formulated as an upper bound to the strength of correlations between classically fluctuating quantities. Quantum mechanical correlations can, however, exceed classical bounds.Here we realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones of the collision halo. The correlated atoms have large spatial separations and therefore open new opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.Comment: Final published version (with minor changes). 5 pages, 3 figures, plus Supplementary Materia
    • 

    corecore