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The Cauchy-Schwarz (CS) inequality—one of the most widely used and important inequalities in

mathematics—can be formulated as an upper bound to the strength of correlations between classically

fluctuating quantities. Quantum-mechanical correlations can, however, exceed classical bounds. Here we

realize four-wave mixing of atomic matter waves using colliding Bose-Einstein condensates, and

demonstrate the violation of a multimode CS inequality for atom number correlations in opposite zones

of the collision halo. The correlated atoms have large spatial separations and therefore open new

opportunities for extending fundamental quantum-nonlocality tests to ensembles of massive particles.
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The Cauchy-Schwarz (CS) inequality is ubiquitous in
mathematics and physics [1]. Its utility ranges from proofs
of basic theorems in linear algebra to the derivation of the
Heisenberg uncertainty principle. In its basic form, the CS
inequality simply states that the absolute value of the inner
product of two vectors cannot be larger than the product of
their lengths. In probability theory and classical physics,
the CS inequality can be applied to fluctuating quantities
and states that the expectation value of the cross correlation
hI1I2i between two quantities I1 and I2 is bounded from
above by the autocorrelations in each quantity,

jhI1I2ij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI21ihI22i

q
: (1)

This inequality is satisfied, for example, by two classical
currents emanating from a common source.

In quantum mechanics, correlations can, however, be
stronger than those allowed by the CS inequality [2–4].
Such correlations have been demonstrated in quantum
optics using, for example, antibunched photons produced
via spontaneous emission [5], or twin photon beams gen-
erated in a radiative cascade [6], parametric down conver-
sion [7], and optical four-wave mixing [8]. Here the
discrete nature of the light and the strong correlation (or
anticorrelation in antibunching) between photons is re-
sponsible for the violation of the CS inequality. The vio-
lation has even been demonstrated for two light beams
detected as continuous variables [8].

In this work we demonstrate a violation of the CS
inequality in matter-wave optics using pair-correlated
atoms formed in a collision of two Bose-Einstein conden-
sates (BECs) of metastable helium [9–12] (see Fig. 1). The
CS inequality which we study is a multimode inequality,
involving integrated atomic densities, and therefore is
different from the typical two-mode situation studied in

quantum optics. Our results demonstrate the potential of
atom optics experiments to extend the fundamental tests of
quantum mechanics to ensembles of massive particles.
Indeed, violation of the CS inequality implies the possi-
bility of (but is not equivalent to) formation of quantum
states that exhibit the Einstein-Podolsky-Rosen (EPR) cor-
relations or violate a Bell’s inequality [3]. The EPR and
Bell-state correlations are of course of wider significance

FIG. 1 (color online). Diagram of the collision geometry.
(a) Two cigar-shaped condensates moving in opposite directions
along the axial direction z shortly after their creation by a Bragg
laser pulse (the anisotropy and spatial separation are not to
scale). (b) Spherical halo of scattered atoms produced by four-
wave mixing after the cloud expands and the atoms fall to the
detector 46 cm below. During the flight to the detector, the
unscattered condensates acquire a disk shape shown in white
on the north and south poles of the halo. The (red) boxes 1 and 2
illustrate a pair of diametrically symmetric counting zones
(integration volumes) for the average cross-correlation and au-

tocorrelation functions, �Gð2Þ
12 and �Gð2Þ

ii (i ¼ 1; 2) (see text), used in
the analysis of the Cauchy-Schwarz inequality.
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to foundational principles of quantum mechanics than
those that violate a CS inequality. Nevertheless, the im-
portance of understanding the CS inequality in new physi-
cal regimes lies in the fact that: (i) they are the simplest
possible tests of stronger-than-classical correlations, and
(ii) they can be viewed as precursors, or necessary con-
ditions, for the stricter tests of quantum mechanics.

The atom-atom correlations resulting from the collision
and violating the CS inequality are measured after long
time-of-flight expansion using time- and position-resolved
atom detection techniques unique to metastable atoms
[13]. The 307 ms long expansion time combined with a
large collision and hence scattering velocity results in a
�6 cm spatial separation between the scattered, correlated
atoms. This separation is quite large compared to what has
been achieved in recent related BEC experiments based on
double-well or two-component systems [14–16], trap
modulation techniques [17], or spin-changing interactions
[18,19]. This makes the BEC collisions ideally suited to
quantum-nonlocality tests using ultracold atomic gases and
the intrinsic interatomic interactions.

In a simple two-mode quantum problem, described by

boson creation and annihilation operators âyi and âi (i ¼
1; 2), the Cauchy-Schwarz inequality of the form of Eq. (1)
can be formulated in terms of the second-order correlation

functions, Gð2Þ
ij ¼ h:n̂in̂j:i ¼ hâyi âyj âjâii, and reads [2–4]

Gð2Þ
12 � ½Gð2Þ

11G
ð2Þ
22 �1=2; (2)

or simplyGð2Þ
12 � Gð2Þ

11 in the symmetric case ofGð2Þ
11 ¼ Gð2Þ

22 .

Here, Gð2Þ
12 ¼ Gð2Þ

21 , n̂i ¼ âyi âi is the particle number opera-

tor, and the double colons indicate normal ordering of the
creation and annihilation operators, which ensures the
correct quantum-mechanical interpretation of the process
of detection of pairs of particles that contribute to the
measurement of the second-order correlation function
[2]. Stronger-than-classical correlation violating this in-

equality would require Gð2Þ
12 > ½Gð2Þ

11G
ð2Þ
22 �1=2, or Gð2Þ

12 >

Gð2Þ
11 in the symmetric case.

The situation we analyze here is counterintuitive in that
we observe a peak cross correlation (for pairs of atoms
scattered in opposite directions) that is smaller than the
peak autocorrelation (for pairs of atoms propagating in the
same direction). In a simple two-mode model such a ratio
of the cross correlation and autocorrelation satisfies the
classical CS inequality. However, in order to adequately
treat the atom-atom correlations in the BEC collision
problem, one must generalize the CS inequality to a multi-
mode situation, which takes into account the fact that the
cross correlations and autocorrelations in matter-wave op-
tics are usually functions (in our case of momentum). The
various correlation functions can have different widths and
peak heights, and one must define an appropriate integra-
tion domain over multiple momentum modes to recover an

inequality that plays the same role as that in the two-mode
case and is actually violated, as we show below.
The experimental setup was described in Refs. [11,12].

Briefly, a cigar-shaped BEC of metastable helium,
containing approximately �105 atoms, trapped initially
in a harmonic trapping potential with frequencies
ð!x;!y;!zÞ=2� ¼ ð1500; 1500; 7:5Þ Hz, was split by

Bragg diffraction into two parts along the axial (z-) direc-
tion [see Fig. 1(a)], with velocities differing by twice the
single photon recoil velocity vrec ¼ 9:2 cm=s. Atoms in-
teract via binary, momentum conserving s-wave collisions
and scatter onto a nearly spherical halo [see Fig. 1(b)]
whose radius in velocity space is about the recoil velocity
[11,20]. The scattered atoms fall onto a detector that
records the arrival times and positions of individual atoms
[13] with a quantum efficiency of �10%. The halo diame-
ter in position space at the detector is �6 cm. We use the
arrival times and positions to reconstruct three-
dimensional velocity vectors v for each atom. The unscat-
tered BECs locally saturate the detector. To quantify the
strength of correlations corresponding only to spontane-
ously scattered atoms, we exclude from the analysis the
data points containing the BECs and their immediate vi-
cinity (jvzj< 0:5vrec) and further restrict ourselves to a
spherical shell of radial thickness 0:9< vr=vrec < 1:1
(where the signal to noise is large enough), defining the
total volume of the analyzed region as V data.
Using the atom arrival and position data, we can mea-

sure the second-order correlation functions between the
atom number densities n̂ðkÞ at two points in momentum

space, Gð2Þðk;k0Þ ¼ h:n̂ðkÞn̂ðk0Þ:i (see Supplementary
Material [21]), with k denoting the wave vector k ¼
mv=@ and @k the momentum. The correlation measure-
ments are averaged over a certain counting zone (integra-
tion volume V ) on the scattering sphere in order to get
statistically significant results. By choosing k0 to be nearly
opposite or nearly collinear to k, we can define the aver-
aged back-to-back (BB) or collinear (CL) correlation func-
tions,

G ð2Þ
BBð�kÞ ¼

Z
V
d3kGð2Þðk;�kþ�kÞ; (3)

G ð2Þ
CLð�kÞ ¼

Z
V
d3kGð2Þðk;kþ �kÞ; (4)

which play a role analogous to the cross-correlation and

autocorrelation functions, Gð2Þ
12 and Gð2Þ

ii , in the simple two-

mode problem discussed above. The BB and CL correla-
tions are defined as functions of the relative displacement
�k, while the dependence on k is lost due to the averaging.
The normalized BB and CL correlations functions,

gð2ÞBBð�kÞ and gð2ÞCLð�kÞ, averaged over the unexcised part

of the scattering sphere V data are shown in Fig. 2. The BB
correlation peak results from binary, elastic collisions be-
tween atoms, whereas the CL correlation peak is a variant
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of the Hanbury Brown and Twiss effect [22,23]—a two-
particle interference involving members of two different
atom pairs [9,10,24,25]. Both correlation functions are
anisotropic because of the anisotropy of the initial collid-
ing condensates.

An important difference with the experiment of Ref. [9]
is that the geometry in the present experiment (with

vertically elongated condensates) is such that the observed
widths of the correlation functions are not limited by the
detector resolution. Here we now observe that the BB and
CL correlations have very different widths, with the BB
width being significantly larger than the CL width. This
broadening is largely due to the size of the condensate in
the vertical direction (� 1 mm). The elongated nature of
the cloud and the estimated temperature of �200 nK also
means that the condensates correspond in fact to quasicon-
densates [26] whose phase coherence length is smaller than
the size of the atomic cloud. The broadening of the BB
correlation due to the presence of quasicondensates will be
discussed in another paper [27], but we emphasize that the
CS inequality analyzed here is insensitive to the detailed
broadening mechanism as it relies on integrals over corre-
lation functions. This is one of the key points in consider-
ing the multimode CS inequality.
Since the peak of the CL correlation function corre-

sponds to a situation in which the two atoms follow the
same path, we can associate it with the autocorrelation of
the momentum of the particles on the collision sphere.
Similarly, the peak of the BB correlation function corre-
sponds to two atoms following two distinct paths and
therefore can be associated with the cross-correlation func-
tion between the respective momenta. Hence we realize a
situation in which one is tempted to apply the CS inequal-
ity to the peak values of these correlation functions. As we
see from Fig. 2, if one naively uses only the peak heights,

the CS inequality is not violated since gð2ÞBBð0Þ< gð2ÞCLð0Þ and
hence Gð2Þ

BBð0Þ<Gð2Þ
CLð0Þ due to the nearly identical nor-

malization factors (see Supplementary Material [21]).
We can, however, construct a CS inequality that is

violated if we use integrated correlation functions, �Gð2Þ
ij ,

that correspond to atom numbers N̂i ¼
R
V i

d3kâyðkÞâðkÞ
(i ¼ 1; 2) in two distinct zones on the collision halo [21],

�G ð2Þ
ij ¼ h:N̂iN̂j:i ¼

Z
V i

d3k
Z
V j

d3k0Gð2Þðk;k0Þ: (5)

The choice of the two integration (zone) volumes V i and

V j determines whether the �Gð2Þ
ij -function corresponds to

the BB (i � j) or CL (i ¼ j) correlation functions, Eqs. (3)
and (4).
The CS inequality that we can now analyze for violation

reads �Gð2Þ
12 � ½ �Gð2Þ

11
�Gð2Þ
22 �1=2. To quantify the degree of vio-

lation, we introduce a correlation coefficient,

C ¼ �Gð2Þ
12 =½ �Gð2Þ

11
�Gð2Þ
22 �1=2; (6)

which is smaller than unity classically, but can be larger
than unity for states with stronger-than-classical
correlations.
In Fig. 3 we plot the correlation coefficientC determined

from the data for different integration zones V 1 and V 2,
but always keeping the two volumes equal. When V 1 and
V 2 correspond to diametrically opposed, correlated pairs

FIG. 2 (color online). Normalized back-to-back (a) and

collinear (b) correlation functions, gð2ÞBBð�kÞ and gð2ÞCLð�kÞ, in
momentum space integrated over V data corresponding to jkzj<
0:5krec and 0:9< kr=krec < 1:1, where krec ¼ mvrec=@ is the
recoil momentum. The data are averaged over 3600 experimen-
tal runs. Because of the cylindrical symmetry of the initial
condensate and of the overall geometry of the collision, the
dependence on the kx and ky components should physically be

identical and therefore can be combined (averaged); the corre-
lation functions can then be presented as two-dimensional sur-
face plots on the (kz, kxy) plane. The two-dimensional plots were

smoothed with a nearest neighbor running average. The data
points along the kz and kxy projections (corresponding to thin

slices centered at kxy ¼ 0 and kz ¼ 0, respectively) are not

smoothed. The solid lines show the Gaussian fits to these
projections. The peak height of the back-to-back correlation
function is �1:2 while that of the collinear correlation function
is �1:4, apparently confirming the Cauchy-Schwarz inequality.
The widths of the two distributions are, however, very different
(�BB;x ’ �BB;y ’ 0:21krec, �BB;z ’ 0:019krec, whereas �CL;x ’
�CL;y ’ 0:036krec, �CL;z ’ 0:002krec) and a multimode formula-

tion of the Cauchy-Schwarz inequality, which relates the relative
volumes of the correlation functions, is violated.
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of zones (red circles), C is greater than unity, violating the
CS inequality, while for neighboring, uncorrelated pairs
(blue squares) the CS inequality is not violated. The figure
also shows the results of a quantum-mechanical calculation
of C using a stochastic Bogoliubov approach (green thick
solid curve) [20,21,28]. The calculation is for the initial
total number of atoms N ¼ 85 000 and is in good agree-
ment with the observations. The choice of large integration
volumes (small number of zones M) results in only weak
violations, while using smaller volumes (large M) in-
creases the violation. This behavior is to be expected (see
Supplementary Material [21]) because large integration
zones include many, uncorrelated events which dilute the
computed correlation. The saturation of C, in the current
arrangement of integration zones—with a fixed number of
polar cuts and hence a fixed zone size along zwhich always
remains larger than the longitudinal correlation width—
occurs when the tangential size of the zone begins to
approach the transverse width of the CL correlation func-
tion. If the zone sizes were made smaller in all directions,
we would recover the situation applicable to the peak
values of the correlation functions (and hence no CS
violation) as soon as the sizes become smaller than the
respective correlation widths (see Eq. (S11) in the
Supplementary Material [21]).

We have shown the violation of the CS inequality using
the experimental data of Ref. [11] in which a sub-
Poissonian variance in the atom number difference
between opposite zones was observed. Although the two
effects are linked mathematically in simple cases, they are
not equivalent in general [8,21]. Because of the multimode
nature of the four-wave mixing process, we observe
stronger (weaker) suppression of the variance below the
shot-noise level for the larger (smaller) zones (see Fig. 3 of
[11]), whereas the degree of violation of the CS inequality
follows the opposite trend. This difference can be of im-
portance for other experimental tests of stronger-than-
classical correlations in inherently multimode situations
in matter-wave optics.
The nonclassical character of the observed correlations

implies that the scattered atoms cannot be described by
classical stochastic random variables [29]. Our experiment
is an important step toward the demonstrations of increas-
ingly restrictive types of nonlocal quantum correlations
with matter waves, which we hope will one day culminate
in the violation of a Bell inequality as well. In this case, the
nonclassical character of correlations will also defy a
description via a local hidden variable theory [4,29].
Nonoptical violations of Bell’s inequalities have so far
only been demonstrated for pairs of massive particles
(such as two trapped ions [30] or proton-proton pairs in
the decay of 2He [31]), but never in the multiparticle
regime. The BEC collision scheme used here is particularly
well-suited for demonstrating a Bell inequality violation
[32] using an atom optics analog of the Rarity-Tapster
setup [33].
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