846 research outputs found

    Brazilian elections: voting for a scaling democracy

    Full text link
    The proportional elections held in Brazil in 1998 and 2002 display identical statistical signatures. In particular, the distribution of votes among candidates includes a power-law regimen. We suggest that the rationale behind this robust scaling invariance is a multiplicative process in which the voter's choice for a candidate is governed by a product of probabilities.Comment: 4 pages, 2 figure

    Differences in MAT gene distribution and expression between Rhynchosporium species on grasses

    Get PDF
    Leaf blotch is a globally important disease of barley crops and other grasses that is caused by at least five host-specialized species in the fungal genus Rhynchosporium. The pathogen R. commune (specialized to barley, brome-grass and Italian ryegrass) has long been considered to reproduce only by asexual means, but there has been accumulating evidence for recombination and gene flow from population genetic studies and the detection of complementary MAT1-1 and MAT1-2 isolates in a c. 1:1 ratio in the field. Here, it is demonstrated that 28 isolates of the closely related species R. agropyri (on couch-grass) and R. secalis (on rye and triticale), collected from Europe, were also either of MAT1-1 or MAT1-2 genotype and that the distribution of mating types did not deviate significantly from a 1:1 ratio. Evidence is then provided for MAT1-1-1 and MAT1-2-1 gene expression during mycelial growth for all three species. By contrast, 27 isolates of the more distantly related R. orthosporum (on cocksfoot) and R. lolii (on Italian and perennial ryegrasses) from Europe were exclusively of the MAT1-1 genotype, and expression of the MAT1-1-1 gene could not be detected during mycelial growth. These data suggest that cryptic sexual cycles are more likely to exist for R. commune, R. agropyri and R. secalis than for either R. orthosporum or R. lolii. A phylogenetic analysis of partial MAT1-1 idiomorph sequences resolved these five species into two distinct groups (R. commune, R. agropyri and R. secalis versus R. orthosporum and R. lolii) but provided only limited resolution within each group

    Differences in MAT gene distribution and expression between Rhynchosporium species on grasses

    Get PDF
    Leaf blotch is a globally important disease of barley crops and other grasses that is caused by at least five host-specialized species in the fungal genus Rhynchosporium. The pathogen R. commune (specialized to barley, brome-grass and Italian ryegrass) has long been considered to reproduce only by asexual means, but there has been accumulating evidence for recombination and gene flow from population genetic studies and the detection of complementary MAT1-1 and MAT1-2 isolates in a c. 1:1 ratio in the field. Here, it is demonstrated that 28 isolates of the closely related species R. agropyri (on couch-grass) and R. secalis (on rye and triticale), collected from Europe, were also either of MAT1-1 or MAT1-2 genotype and that the distribution of mating types did not deviate significantly from a 1:1 ratio. Evidence is then provided for MAT1-1-1 and MAT1-2-1 gene expression during mycelial growth for all three species. By contrast, 27 isolates of the more distantly related R. orthosporum (on cocksfoot) and R. lolii (on Italian and perennial ryegrasses) from Europe were exclusively of the MAT1-1 genotype, and expression of the MAT1-1-1 gene could not be detected during mycelial growth. These data suggest that cryptic sexual cycles are more likely to exist for R. commune, R. agropyri and R. secalis than for either R. orthosporum or R. lolii. A phylogenetic analysis of partial MAT1-1 idiomorph sequences resolved these five species into two distinct groups (R. commune, R. agropyri and R. secalis versus R. orthosporum and R. lolii) but provided only limited resolution within each group

    Innovations in air sampling to detect plant pathogens

    Get PDF
    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics

    Three point SUSY Ward identities without Ghosts

    Full text link
    We utilise a non-local gauge transform which renders the entire action of SUSY QED invariant and respects the SUSY algebra modulo the gauge-fixing condition, to derive two- and three-point ghost-free SUSY Ward identities in SUSY QED. We use the cluster decomposition principle to find the Green's function Ward identities and then takes linear combinations of the latter to derive identities for the proper functions.Comment: 20 pages, no figures, typos correcte

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management

    Get PDF
    With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta-analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here we apply a super-linear emissions response model to crop-specific, spatially-explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O-N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20-40% lower throughout Sub-Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak non-linear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. Since aggregated fertilizer data generate underestimation bias in nonlinear models, high-resolution N application data are critical to support accurate N2O emissions estimates

    Cystic Fibrosis Foundation and European Cystic Fibrosis Society Survey of cystic fibrosis mental health care delivery

    Get PDF
    Background: Psychological morbidity in individuals with cystic fibrosis (CF) and their caregivers is common. The Cystic Fibrosis Foundation (CFF) and European Cystic Fibrosis Society (ECFS) Guidelines Committee on Mental Health sought the views of CF health care professionals concerning mental health care delivery. Methods: An online survey which focused on the current provision and barriers to mental health care was distributed to CF health care professionals. Results: Of the 1454 respondents, many did not have a colleague trained in mental health issues and 20% had no one on their team whose primary role was focused on assessing or treating these issues. Insufficient resources and a lack of competency were reported in relation to mental health referrals. Seventy-three percent of respondents had no experience with mental health screening. Of those who did, they utilized 48 different, validated scales. Conclusions: These data have informed the decision-making, dissemination and implementation strategies of the Mental Health Guidelines Committee sponsored by the CFF and ECFS

    Magnetic phase separation in ordered alloys

    Get PDF
    We present a lattice model to study the equilibrium phase diagram of ordered alloys with one magnetic component that exhibits a low temperature phase separation between paramagnetic and ferromagnetic phases. The model is constructed from the experimental facts observed in Cu3x_{3-x}AlMnx_{x} and it includes coupling between configurational and magnetic degrees of freedom which are appropriated for reproducing the low temperature miscibility gap. The essential ingredient for the occurrence of such a coexistence region is the development of ferromagnetic order induced by the long-range atomic order of the magnetic component. A comparative study of both mean-field and Monte Carlo solutions is presented. Moreover, the model may enable the study of the structure of the ferromagnetic domains embedded in the non-magnetic matrix. This is relevant in relation to phenomena such as magnetoresistance and paramagnetism.Comment: 12 pages, 11 figures, accepted in Phys. Rev.

    PDT in the Thoracic Cavity: Spectroscopic Methods and Fluence Modeling for Treatment Planning

    Get PDF
    PDT for the thoracic cavity provides a promising cancer treatment modality, but improvements in treatment planning, particularly in PDT dosimetry, can be made to improve uniformity of light delivery. When a cavity of arbitrary geometry is illuminated, the fluence increases due to multiple-scattered photons, referred to as the Integrating Sphere Effect (ISE). Current pleural PDT treatment protocol at the University of Pennsylvania monitors light fluence (hereafter simply fluence, measured in W/cm2) via seven isotropic detectors sutured at different locations in thoracic cavity of a patient. This protocol monitors light at discrete locations, but does not provide a measurement of fluence for the thoracic cavity as a whole. Current calculation of light fluence includes direct light only and thus does not account for the unique optical properties of each tissue type present, which in turn affects the accuracy of the calculated light distribution in the surrounding tissue and, in turn, the overall cell death and treatment efficacy. Treatment planning for pleural PDT can be improved, in part, by considering the contribution of scattered light, which is affected by the two factors of geometry and in vivo optical properties. We expanded the work by Willem Star in regards to the ISE in a spherical cavity. A series of Monte Carlo (MC) simulations were run for semi-infinite planar, spherical, and ellipsoidal geometries for a range of optical properties. The results of these simulations are compared to theory and numerical solutions for fluence in the cavity and at the cavity-medium boundary. The development via MC simulations offers a general method of calculating the required light fluence specialized to each patient, based on the treatment surface area. The scattered fluence calculation is dependent on in vivo optical properties (μa and μs\u27) of the tissues treated. Diffuse reflectance and fluorescence spectroscopy methods are used to determine the optical properties and oxygenation (reflectance measurements) and drug concentration (fluorescence measurements) of different tissues in vivo, before and after treatment, in patients enrolled the Phase I HPPH study ongoing at the University of Pennsylvania. This work aims to provide the building blocks essential to pleural PDT treatment planning by more accurately calculating the required fluence using a model that accounts for the effects of treatment geometry and optical properties measured in vivo
    corecore