2,350 research outputs found
Magnetotail structures in a simulated Earth's magnetosphere
The structure of the magnetotail is investigated in a laboratory simulated magnetosphere. Particular emphasis is placed on the region of distant magnetotail where the closed field line region of the plasma sheet terminates and the process of reconnection takes place. Our study builds upon the previous investigation of the magnetotail where the main results were based on the magnetic field measurements in the tail region of the simulated magnetosphere. In this paper, more elaborate measurements of plasma flow and electric field are presented. Besides these measurements, this region of distant magnetotail is also explored by high resolution imaging with a gated optical imager (GOI) and by digital image analysis. These images clearly reveal a Y-type magnetic neutral line for the northward 'interplanetary' field (IMF) and a usual X-type for the southward IMF that confirms our previous results deduced from the magnetic field measurements. In the neighborhood of these neutral points a strong component of dawn to dusk electric field (E(sub y)) and a counterstreaming plasma flow is also observed. Plasma flow is measured by using a double sided Faraday cup which is also used to measure the y-component of tail current (J(sub y)) at different locations. These measurements reveal that the tail current is not carried by ions as previously thought, rather it is carried by electrons alone
An 8-cm ion thruster characterization
The performance of the Ion Auxiliary Propulsion System (IAPS) thruster was increased to thrust T = 32 mN, specific impulse I sub sp = 4062 s, and thrust-to-power ratio T/P = 33 mN/kW. This performance was obtained by increasing the discharge power, accelerating voltage, propellant flow rate, and chamber magnetic field. Adding a plenum and main vaporizer for propellant distribution was the only major change required in the thruster. The modified thruster characterization is presented. A cathode magnet assembly did not improve performance. A simplified power processing unit was designed and evaluated. This unit decreased the parts count of the IAPS power processing unit by a factor of ten
Synchronization from Disordered Driving Forces in Arrays of Coupled Oscillators
The effects of disorder in external forces on the dynamical behavior of
coupled nonlinear oscillator networks are studied. When driven synchronously,
i.e., all driving forces have the same phase, the networks display chaotic
dynamics. We show that random phases in the driving forces result in regular,
periodic network behavior. Intermediate phase disorder can produce network
synchrony. Specifically, there is an optimal amount of phase disorder, which
can induce the highest level of synchrony. These results demonstrate that the
spatiotemporal structure of external influences can control chaos and lead to
synchronization in nonlinear systems.Comment: 4 pages, 4 figure
Quantum Phase Transitions in Coupled Dimer Compounds
We study the critical properties in cubic systems of antiferromagnetically
coupled spin dimers near magnetic-field induced quantum phase transitions. The
quantum critical points in the zero-temperature phase diagrams are determined
from quantum Monte Carlo simulations. Furthermore, scaling properties of the
uniform magnetization and the staggered transverse magnetization across the
quantum phase transition in magnetic fields are calculated. The critical
exponents are derived from Ginzburg-Landau theory. We find excellent agreement
between the quantum Monte Carlo simulations and the analytical results.Comment: 7 pages, 9 eps-figure
Recommended from our members
Individual nodes contribution to the mesoscale of complex networks
The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains
Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs
We endeavored to identify objective blood biomarkers for pain, a subjective sensation with a biological basis, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We studied psychiatric patients, a high risk group for co-morbid pain disorders and increased perception of pain. For discovery, we used a powerful within-subject longitudinal design. We were successful in identifying blood gene expression biomarkers that were predictive of pain state, and of future emergency department (ED) visits for pain, more so when personalized by gender and diagnosis. MFAP3, which had no prior evidence in the literature for involvement in pain, had the most robust empirical evidence from our discovery and validation steps, and was a strong predictor for pain in the independent cohorts, particularly in females and males with PTSD. Other biomarkers with best overall convergent functional evidence for involvement in pain were GNG7, CNTN1, LY9, CCDC144B, and GBP1. Some of the individual biomarkers identified are targets of existing drugs. Moreover, the biomarker gene expression signatures were used for bioinformatic drug repurposing analyses, yielding leads for possible new drug candidates such as SC-560 (an NSAID), and amoxapine (an antidepressant), as well as natural compounds such as pyridoxine (vitamin B6), cyanocobalamin (vitamin B12), and apigenin (a plant flavonoid). Our work may help mitigate the diagnostic and treatment dilemmas that have contributed to the current opioid epidemic
High yield fusion in a Staged Z-pinch
We simulate fusion in a Z-pinch; where the load is a xenon-plasma liner
imploding onto a deuterium-tritium plasma target and the driver is a 2 MJ, 17
MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic,
2-1/2 D, radiation-MHD code, MACH2. During implosion a shock forms in the Xe
liner, transporting current and energy radially inward. After collision with
the DT, a secondary shock forms pre-heating the DT to several hundred eV.
Adiabatic compression leads subsequently to a fusion burn, as the target is
surrounded by a flux-compressed, intense, azimuthal-magnetic field. The
intense-magnetic field confines fusion -particles, providing an
additional source of ion heating that leads to target ignition. The target
remains stable up to the time of ignition. Predictions are for a neutron yield
of and a thermonuclear energy of 84 MJ, that is, 42 times
greater than the initial, capacitor-stored energy
Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations
We investigate the minus-sign problem that afflicts quantum Monte Carlo (QMC)
simulations of frustrated quantum spin systems, focusing on spin S=1/2, two
spatial dimensions, and the extended Shastry-Sutherland model. We show that
formulating the Hamiltonian in the diagonal dimer basis leads to a sign problem
that becomes negligible at low temperatures for small and intermediate values
of the ratio of the inter- and intradimer couplings. This is a consequence of
the fact that the product state of dimer singlets is the exact ground state
both of the extended Shastry-Sutherland model and of a corresponding
"sign-problem-free" model, obtained by changing the signs of all positive
off-diagonal matrix elements in the dimer basis. By exploiting this insight, we
map the sign problem throughout the extended parameter space from the
Shastry-Sutherland to the fully frustrated bilayer model and compare it with
the phase diagram computed by tensor-network methods. We use QMC to compute
with high accuracy the temperature dependence of the magnetic specific heat and
susceptibility of the Shastry-Sutherland model for large systems up to a
coupling ratio of 0.526(1) and down to zero temperature. For larger coupling
ratios, our QMC results assist us in benchmarking the evolution of the
thermodynamic properties by systematic comparison with exact diagonalization
calculations and interpolated high-temperature series expansions.Comment: 13 pages including 10 figures; published version with minor changes
and correction
NMR and dc-susceptibility studies of NaVGe2O6
We report the results of measurements of the dc magnetic susceptibility
chi(T) and of the 23Na nuclear magnetic resonance (NMR) response of NaVGe2O6, a
material in which the V ions form a network of interacting one-dimensional spin
S=1 chains. The experiments were made at temperatures between 2.5 and 300 K.
The chi(T) data suggest that the formation of the expected low-temperature
Haldane phase is intercepted by an antiferromagnetic phase transition at 18 K.
The transition is also reflected in the 23Na NMR spectra and the corresponding
spin-lattice relaxation rate 1/T1(T). In the ordered phase, 1/T1(T) decreases
by orders of magnitude with decreasing temperature, indicating the formation of
a gap of the order of 12 K in the magnetic excitation spectrum.Comment: 10 pages, 15 figures; v2 with minor revisions of the tex
Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure
The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Å, c = 6.8961(4) Å, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Å, b = 4.3776(3) Å, c = 7.2188(4) Å, β = 104.9679(33)°, Z = 4 and wRp = 0.049). The N−N bond lengths of 1.202(4) Å in CaN2 (SrN2 1.239(4) Å, BaN2 1.23(2) Å) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2−. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cm−1 assigned to the N−N stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides
- …