122 research outputs found

    The relation between column densities of interstellar OH and CH molecules

    Full text link
    We present a new, close relation between column densities of OH and CH molecules based on 16 translucent sightlines (six of them new) and confirm the theoretical oscillator strengths of the OH A--X transitions at 3078 and 3082 \AA (0.00105, 0.000648) and CH B--X transitions at 3886 and 3890 \AA, (0.00320, 0.00210), respectively. We also report no difference between observed and previously modelled abundances of the OH molecule.Comment: 4 pages, 0 figures, accepted for publication in MNRA

    A Validated Finite Element Model for Room Acoustic Treatments with Edge Absorbers

    Full text link
    Porous acoustic absorbers have excellent properties in the low-frequency range when positioned in room edges, therefore they are a common method for reducing low-frequency reverberation. However, standard room acoustic simulation methods such as ray tracing and mirror sources are invalid for low frequencies in general which is a consequence of using geometrical methods, yielding a lack of simulation tools for these so-called edge absorbers. In this article, a validated finite element simulation model is presented, which is able to predict the effect of an edge absorber on the acoustic field. With this model, the interaction mechanisms between room and absorber can be studied by high-resolved acoustic field visualizations in both room and absorber. The finite element model is validated against transfer function data computed from impulse response measurements in a reverberation chamber in style of ISO 354. The absorber made of Basotect is modeled using the Johnson-Champoux-Allard-Lafarge model, which is fitted to impedance tube measurements using the four-microphone transfer matrix method. It is shown that the finite element simulation model is able to predict the influence of different edge absorber configurations on the measured transfer functions to a high degree of accuracy. The evaluated third-octave band error exhibits deviations of 3.25dB to 4.11dB computed from third-octave band averaged spectra.Comment: 20 pages, 16 figures, 3 tables, Preprint submitted to Acta Acustic

    First interstellar detection of OH+

    Full text link
    The Atacama Pathfinder Experiment (APEX) 12m telescope was used to observe the N=1-0, J=0-1 ground state transitions of OH+ at 909.1588 GHz with the CHAMP+ heterodyne array receiver. Two blended hyperfine structure transitions were detected in absorption against the strong continuum source Sagittarius B2(M) and in several pixels offset by 18". Both, absorption from Galactic center gas as well as absorption from diffuse clouds in intervening spiral arms in a velocity range from -116 to 38.5 km/s is observed. The total OH+ column density of absorbing gas is 2.4 \times 10^15 cm-2. A column density local to Sgr B2(M) of 2.6 \times 10^14 cm-2 is found. On the intervening line-of-sight the column density per unit velocity interval are in the range from 1 to 40 \times 10^12 cm-2/(km/s). OH+ is found to be on average more abundant than other hydrides such as SH+ and CH+. Abundance ratios of OH and atomic oxygen to OH+ are found to be in the range of 10^1-2 and 10^3-4, respectively. The detected absorption of a continuous velocity range on the line-of-sight shows OH+ to be an abundant component of diffuse clouds.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    Molecular absorption lines toward star-forming regions : a comparative study of HCO+, HNC, HCN, and CN

    Full text link
    Aims. The comparative study of several molecular species at the origin of the gas phase chemistry in the diffuse interstellar medium (ISM) is a key input in unraveling the coupled chemical and dynamical evolution of the ISM. Methods. The lowest rotational lines of HCO+, HCN, HNC, and CN were observed at the IRAM-30m telescope in absorption against the \lambda 3 mm and \lambda 1.3 mm continuum emission of massive star-forming regions in the Galactic plane. The absorption lines probe the gas over kiloparsecs along these lines of sight. The excitation temperatures of HCO+ are inferred from the comparison of the absorptions in the two lowest transitions. The spectra of all molecular species on the same line of sight are decomposed into Gaussian velocity components. Most appear in all the spectra of a given line of sight. For each component, we derived the central opacity, the velocity dispersion, and computed the molecular column density. We compared our results to the predictions of UV-dominated chemical models of photodissociation regions (PDR models) and to those of non-equilibrium models in which the chemistry is driven by the dissipation of turbulent energy (TDR models). Results. The molecular column densities of all the velocity components span up to two orders of magnitude. Those of CN, HCN, and HNC are linearly correlated with each other with mean ratios N(HCN)/N(HNC) = 4.8 ±\pm 1.3 and N(CN)/N(HNC) = 34 ±\pm 12, and more loosely correlated with those of HCO+, N(HNC)/N(HCO+) = 0.5 ±\pm 0.3, N(HCN)/N(HCO+) = 1.9 ±\pm 0.9, and N(CN)/N(HCO+) = 18 ±\pm 9. These ratios are similar to those inferred from observations of high Galactic latitude lines of sight, suggesting that the gas sampled by absorption lines in the Galactic plane has the same chemical properties as that in the Solar neighbourhood. The FWHM of the Gaussian velocity components span the range 0.3 to 3 km s-1 and those of the HCO+ lines are found to be 30% broader than those of CN-bearing molecules. The PDR models fail to reproduce simultaneously the observed abundances of the CN-bearing species and HCO+, even for high-density material (100 cm-3 < nH < 104 cm-3). The TDR models, in turn, are able to reproduce the observed abundances and abundance ratios of all the analysed molecules for the moderate gas densities (30 cm-3 < nH < 200 cm-3) and the turbulent energy observed in the diffuse interstellar medium. Conclusions. Intermittent turbulent dissipation appears to be a promising driver of the gas phase chemistry of the diffuse and translucent gas throughout the Galaxy. The details of the dissipation mechanisms still need to be investigated

    A cyclic bipolar wind in the interacting binary V393 Scorpii

    Full text link
    V393 Scorpii is a Double Periodic Variable characterized by a relatively stable non-orbital photometric cycle of 253 days. Mennickent et al. argue for the presence of a massive optically thick disc around the more massive B-type component and describe the evolutionary stage of the system. In this paper we analyze the behavior of the main spectroscopic optical lines during the long non-orbital photometric cycle. We study the radial velocity of the donor determining their orbital elements and find a small but significant orbital eccentricity (e = 0.04). The donor spectral features are modeled and removed from the spectrum at every observing epoch using the light-curve model given by Mennickent et al. We find that the line emission is larger during eclipses and mostly comes from a bipolar wind. We find that the long cycle is explained in terms of a modulation of the wind strength; the wind has a larger line and continuum emissivity on the high state. We report the discovery of highly variable chromospheric emission in the donor, as revealed by Doppler maps of the emission lines MgII 4481 and CI 6588. We discuss notable and some novel spectroscopic features like discrete absorption components, especially visible at blue-depressed OI 7773 absorption wings during the second half-cycle, Balmer double emission with V/R-curves showing "Z-type" and "S-type" excursions around secondary and main eclipse, respectively, and H_beta emission wings extending up to +- 2000 km/s. We discuss possible causes for these phenomena and for their modulations with the long cycle.Comment: 19 pages, 22 figures, accepted for publication in MNRA
    corecore