9,597 research outputs found

    Observations Supporting the Role of Magnetoconvection in Energy Supply to the Quiescent Solar Atmosphere

    Get PDF
    Identifying the two physical mechanisms behind the production and sustenance of the quiescent solar corona and solar wind poses two of the outstanding problems in solar physics today. We present analysis of spectroscopic observations from the Solar and Heliospheric Observatory that are consistent with a single physical mechanism being responsible for a significant portion of the heat supplied to the lower solar corona and the initial acceleration of the solar wind; the ubiquitous action of magnetoconvection-driven reprocessing and exchange reconnection of the Sun's magnetic field on the supergranular scale. We deduce that while the net magnetic flux on the scale of a supergranule controls the injection rate of mass and energy into the transition region plasma it is the global magnetic topology of the plasma that dictates whether the released ejecta provides thermal input to the quiet solar corona or becomes a tributary that feeds the solar wind.Comment: 34 pages, 13 figures - In press Astrophysical Journal (Jan 1 2007

    High-precision determination of the electric and magnetic radius of the proton

    Full text link
    Using dispersion theory with an improved description of the two-pion continuum based on the precise Roy-Steiner analysis of pion-nucleon scattering, we analyze recent data from electron-proton scattering. This allows for a high-precision determination of the electric and magnetic radius of the proton, rE=(0.838−0.004+0.005−0.003+0.004) r_E = (0.838^{+0.005}_{-0.004}{}^{+0.004}_{-0.003})\,fm and rM=(0.847±0.004±0.004) r_M = (0.847\pm{0.004}\pm{0.004})\,fm, where the first error refers to the fitting procedure using bootstrap and the data while the second one refers to the systematic uncertainty related to the underlying spectral functions.Comment: 8 pages, 2 figures, more discussions and references added, version accepted for publication in Physics Letters

    Dispersion-theoretical analysis of the electromagnetic form factors of the nucleon: Past, present and future

    Full text link
    We review the dispersion-theoretical analysis of the electromagnetic form factors of the nucleon. We emphasize in particular the role of unitarity and analyticity in the construction of the isoscalar and isovector spectral functions. We present new results on the extraction of the nucleon radii, the electric and magnetic form factors and the extraction of ω\omega-meson couplings. All this is supplemented by a detailed calculation of the theoretical uncertainties, using bootstrap and Bayesian methods to pin down the statistical errors, while systematic errors are determined from variations of the spectral functions. We also discuss the physics of the time-like form factors and point out further issues to be addressed in this framework.Comment: 31 pages, 33 pages, commissioned review article for EPJ

    Mouse genetics identifies unique and overlapping functions of fibroblast growth factor receptors in keratinocytes

    Get PDF
    Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double-knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor

    Mott transition in one dimension: Benchmarking dynamical cluster approaches

    Full text link
    The variational cluster approach (VCA) is applied to the one-dimensional Hubbard model at zero temperature using clusters (chains) of up to ten sites with full diagonalization and the Lanczos method as cluster solver. Within the framework of the self-energy-functional theory (SFT), different cluster reference systems with and without bath degrees of freedom, in different topologies and with different sets of variational parameters are considered. Static and one-particle dynamical quantities are calculated for half-filling as a function of U as well as for fixed U as a function of the chemical potential to study the interaction- and filling-dependent metal-insulator (Mott) transition. The recently developed Q-matrix technique is used to compute the SFT grand potential. For benchmarking purposes we compare the VCA results with exact results available from the Bethe ansatz, with essentially exact dynamical DMRG data, with (cellular) dynamical mean-field theory and full diagonalization of isolated Hubbard chains. Several issues are discussed including convergence of the results with cluster size, the ability of cluster approaches to access the critical regime of the Mott transition, efficiency in the optimization of correlated-site vs. bath-site parameters and of multi-dimensional parameter optimization. We also study the role of bath sites for the description of excitation properties and as charge reservoirs for the description of filling dependencies. The VCA turns out to be a computationally cheap method which is competitive with established cluster approaches.Comment: 19 pages, 19 figures, v3 with minor corrections, extended discussio

    Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases

    Get PDF
    Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL

    Application of Eh-pH Diagrams on Acid Leaching Systems for the Recovery of REEs from Bastnaesite, Monazite and Xenotime

    Get PDF
    Bastnaesite, monazite and xenotime are rare earth minerals (REMs) that are typical sources for rare earth elements (REEs). To advance the understanding of their leaching and precipitation behavior in different hydrometallurgical processes, Eh-pH diagrams were constructed and modified using the HSC 9.9 software. The aqueous stability of rare earth elements in H2O and acid leaching systems, i.e., the REE-Ligands-H2O systems, were depicted and studied based on the Eh-pH diagrams. This study considers the most relevant lixiviants, their resulting equilibrium states and the importance in the hydrometallurgical recovery of rare earth elements (REMs). A literature review was performed summarizing relevant Eh-pH diagrams and associated thermodynamic data. Shifting stability regions for REEs were discovered with additions of acid ligands and a narrow stability region for soluble REE-(SO4/Cl/NO3) complexes under highly acidic conditions. As such, the recovery of REEs can be enhanced by adjusting pH and Eh values. In addition, the Eh-pH diagrams of the major contaminants (i.e., Fe, Ca and Al) in leaching systems were studied. The resulting Eh-pH diagrams provide possible insights into potential passivation on the particle surfaces due to the formation of an insoluble product layer

    Strange Particle Production at RHIC

    Get PDF
    We report STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ−\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω−\Omega^{-}, and Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu and Au+Au sNN=200\sqrt{s_{NN}} = 200 GeV collisions. We show that at a given number of participating nucleons, bulk strangeness production is higher in Cu+Cu collisions compared to Au+Au collisions at the same center of mass energy, counter to predictions from the Canonical formalism. We compare both the Cu+Cu and Au+Au yields to AMPT and EPOS predictions, and find they reproduce key qualitative aspects of the data. Finally, we investigate other scaling parameters and find bulk strangeness production for both the measured data and theoretical predictions, scales better with the number participants that undergo more than one collision.Comment: Conference proceedings for Hot Quarks 2008, 5 pages and 4 figure

    Energy and centrality dependences of charged multiplicity density in relativistic nuclear collisions

    Get PDF
    Using a hadron and string cascade model, JPCIAE, the energy and centrality dependences of charged particle pseudorapidity density in relativistic nuclear collisions were studied. Within the framework of this model, both the relativistic p+pˉp+\bar p experimental data and the PHOBOS and PHENIX Au+AuAu+Au data at snn\sqrt s_{nn}=130 GeV could be reproduced fairly well without retuning the model parameters. The predictions for full RHIC energy Au+AuAu+Au collisions and for Pb+PbPb+Pb collisions at the ALICE energy were given. Participant nucleon distributions were calculated based on different methods. It was found that the number of participant nucleons, ,isnotawelldefinedvariablebothexperimentallyandtheoretically.Therefore,itisinappropriatetousechargedparticlepseudorapiditydensityperparticipantpairasafunctionof, is not a well defined variable both experimentally and theoretically. Therefore, it is inappropriate to use charged particle pseudorapidity density per participant pair as a function of for distinguishing various theoretical models.Comment: 10 pages, 4 figures, submitted to Phy. Lett.
    • …
    corecore