27,338 research outputs found
Deposing the Cool Corona of KPD 0005+5106
The ROSAT PSPC pulse height spectrum of the peculiar He-rich hot white dwarf
KPD 0005+5106 provided a great surprise when first analysed by Fleming, Werner
& Barstow (1993). It defied the best non-LTE modelling attempts in terms of
photospheric emission from He-dominated atmospheres including C, N and O and
was instead interpreted as the first evidence for a coronal plasma around a
white dwarf. We show here that a recent high resolution Chandra LETGS spectrum
has more structure than expected from a thermal bremsstrahlung continuum and
lacks the narrow lines of H-like and He-like C expected from a coronal plasma.
Moreover, a coronal model requires a total luminosity more than two orders of
magnitude larger than that of the star itself. Instead, the observed 20-80 AA
flux is consistent with photospheric models containing trace amounts of heavier
elements such as Fe. The soft X-ray flux is highly sensitive to the adopted
metal abundance and provides a metal abundance diagnostic. The weak X-ray
emission at 1 keV announced by O'Dwyer et al (2003) instead cannot arise from
the photosphere and requires alternative explanations. We echo earlier
speculation that such emission arises in a shocked wind. Despite the presence
of UV-optical O VIII lines from transitions between levels n=7-10, no X-ray O
VIII Ly alpha flux is detected. We show that O VIII Lyman photons can be
trapped by resonant scattering within the emitting plasma and destroyed by
photoelectric absorption.Comment: 15 Pages, 4 figures. Accepted for the Astrophysical Journa
The topological classification of one-dimensional symmetric quantum walks
We give a topological classification of quantum walks on an infinite 1D
lattice, which obey one of the discrete symmetry groups of the tenfold way,
have a gap around some eigenvalues at symmetry protected points, and satisfy a
mild locality condition. No translation invariance is assumed. The
classification is parameterized by three indices, taking values in a group,
which is either trivial, the group of integers, or the group of integers modulo
2, depending on the type of symmetry. The classification is complete in the
sense that two walks have the same indices if and only if they can be connected
by a norm continuous path along which all the mentioned properties remain
valid. Of the three indices, two are related to the asymptotic behaviour far to
the right and far to the left, respectively. These are also stable under
compact perturbations. The third index is sensitive to those compact
perturbations which cannot be contracted to a trivial one. The results apply to
the Hamiltonian case as well. In this case all compact perturbations can be
contracted, so the third index is not defined. Our classification extends the
one known in the translation invariant case, where the asymptotic right and
left indices add up to zero, and the third one vanishes, leaving effectively
only one independent index. When two translationally invariant bulks with
distinct indices are joined, the left and right asymptotic indices of the
joined walk are thereby fixed, and there must be eigenvalues at or
(bulk-boundary correspondence). Their location is governed by the third index.
We also discuss how the theory applies to finite lattices, with suitable
homogeneity assumptions.Comment: 36 pages, 7 figure
High-precision Atomic Physics Laboratories in Space: White Dwarfs and Subdwarfs
The 21st European Workshop on White Dwarfs was held in Austin, TX from July 23rd to 27th of 2018Stellar atmospheres are prime laboratories to determine
atomic properties of highly ionized species.
Reliable opacities are crucial ingredients for the
calculation of stellar atmospheres of white dwarfs
and subdwarfs. A detailed investigation on the
precision of many iron-group oscillator strengths
is still outstanding. To make progress, we used
the Hubble Space Telescope Imaging Spectrograph
to measure high-resolution spectra of three hot
subdwarfs that exhibit extremely high iron-group
abundances. The predicted relative strengths of
the identified lines are compared with the observations
to judge the quality of Kurucz’s line data
and to determine correction factors for abundance
determinations of the respective elements.Astronom
On QGP Formation in pp Collisions at 7 TeV
The possibility of QGP formation in central pp collisions at ultra-high
collision energy is discussed. Centrality-dependent \pt-spectra and
(pseudo)rapidity spectra of thermal photons (charged hadrons) from pp
collisions at 7 TeV are presented (addressed). Minimal-bias \pt-spectrum of
direct photons and charged hadrons is compared under the framework with and
without hydrodynamical evolution process.Comment: 4pages, 5figs, submitted to the Proceedings of the 22nd International
Conference on Ultra-relativistic Nucleus-Nucleus Collision (Quark Matter
2011), 23 - 28 May 2011, Annecy, Franc
New X-ray Detections of WNL Stars
Previous studies have demonstrated that putatively single nitrogen-type
Wolf-Rayet stars (WN stars) without known companions are X-ray sources.
However, almost all WN star X-ray detections so far have been of earlier WN2 -
WN6 spectral subtypes. Later WN7 - WN9 subtypes (also known as WNL stars) have
proved more difficult to detect, an important exception being WR 79a (WN9ha).
We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78
(WN7h). These new results, when combined with previous detections, demonstrate
that X-ray emission is present in WN stars across the full range of spectral
types, including later WNL stars. The two WN8 stars observed to date (WR 16 and
WR 40) show unusually low X-ray luminosities (Lx) compared to other WN stars,
and it is noteworthy that they also have the lowest terminal wind speeds
(v_infty). Existing X-ray detections of about a dozen WN stars reveal a trend
of increasing Lx with wind luminosity Lwind = (1/2) M_dot v_infty^2, suggesting
that wind kinetic energy may play a key role in establishing X-ray luminosity
levels in WN stars.Comment: 20 pages, 5 figure
Preserving the measure of compatibility between quantum states
In this paper after defining the abstract concept of compatibility-like
functions on quantum states, we prove that every bijective transformation on
the set of all states which preserves such a function is implemented by an
either unitary or antiunitary operator.Comment: 11 pages, submitted for publicatio
On the origin of white dwarfs with carbon-dominated atmospheres: the case of H1504+65
We explore different evolutionary scenarios to explain the helium deficiency
observed in H1504+65, the most massive known PG1159 star. We concentrate mainly
on the possibility that this star could be the result of mass loss shortly
after the born-again and during the subsequent evolution through the [WCL]
stage. This possibility is sustained by recent observational evidence of
extensive mass-loss events in Sakurai's object and is in line with the recent
finding that such mass losses give rise to PG1159 models with thin helium-rich
envelopes and large rates of period change, as demanded by the pulsating star
PG1159-035. We compute the post born again evolution of massive sequences by
taking into account different mass-loss rate histories. Our results show that
stationary winds during the post-born-again evolution fail to remove completely
the helium-rich envelope so as to explain the helium deficiency observed in
H1504+65. Stationary winds during the Sakurai and [WCL] stages only remove at
most half of the envelope surviving the violent hydrogen burning during the
born-again phase. In view of our results, the recently suggested evolutionary
connection born-again stars --> H1504+65 --> white dwarfs with carbon-rich
atmospheres is difficult to sustain unless the whole helium-rich envelope could
be ejected by non-stationary mass-loss episodes during the Sakurai stage.Comment: 5 pages, 2 figures. To be published in Astronomy & Astrophysic
Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive
We investigate the set a) of positive, trace preserving maps acting on
density matrices of size N, and a sequence of its nested subsets: the sets of
maps which are b) decomposable, c) completely positive, d) extended by identity
impose positive partial transpose and e) are superpositive. Working with the
Hilbert-Schmidt (Euclidean) measure we derive tight explicit two-sided bounds
for the volumes of all five sets. A sample consequence is the fact that, as N
increases, a generic positive map becomes not decomposable and, a fortiori, not
completely positive.
Due to the Jamiolkowski isomorphism, the results obtained for quantum maps
are closely connected to similar relations between the volume of the set of
quantum states and the volumes of its subsets (such as states with positive
partial transpose or separable states) or supersets. Our approach depends on
systematic use of duality to derive quantitative estimates, and on various
tools of classical convexity, high-dimensional probability and geometry of
Banach spaces, some of which are not standard.Comment: 34 pages in Latex including 3 figures in eps, ver 2: minor revision
- …