19 research outputs found
Pluripotent Transcription Factors Possess Distinct Roles in Normal versus Transformed Human Stem Cells
Cancer and normal stem cells (SCs) share proliferative properties of self-renewal and expression of key transcription factors (TFs). Despite similar TF identities, the functional role of specific TFs responsible for retaining SC state has yet to be examined in cancer.Here, we compare the role of Oct4 and Nanog, two-core pluripotent TFs, in transformed (t-hPSCs), and normal human pluripotent stem cells (hPSCs). Unlike normal SCs, self-renewal and survival of t-hPSCs were found to be independent of Oct4. In contrast, t-hPSCs exhibit hypersensitivity to reduction in Nanog and demonstrate complete loss of self-renewal coupled with apoptosis. Dual and sequential knockdown of Oct4 and Nanog revealed that sensitivity of t-hPSCs to Nanog was Oct4 dependent.Our study indicates a bifurcation for the role of two-core SC and cancer related TFs in self-renewal and survival processes. We suggest that the divergent roles of these TFs establish a paradigm to develop novel therapeutics towards selective destruction of aggressive tumors harboring cancer stem cells (CSCs) with similar molecular signatures
Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis
<p>Abstract</p> <p>Background</p> <p>The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by <it>AMBP </it>– and five homologous heavy chains (encoded by <it>ITIH1</it>, <it>ITIH2</it>, <it>ITIH3</it>, <it>ITIH4</it>, and <it>ITIH5</it>), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis.</p> <p>Methods</p> <p>We systematically investigated differential gene expression of the <it>ITIH </it>gene family, as well as <it>AMBP </it>and the interacting partner <it>TNFAIP6 </it>in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry.</p> <p>Results</p> <p>We found that <it>ITIH </it>genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, <it>ITIH </it>genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose <it>ITIH2 </it>expression in human breast cancer. Loss of <it>ITIH2 </it>expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule.</p> <p>Conclusion</p> <p>Altogether, this is the first systematic analysis on the differential expression of <it>ITIH </it>genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies.</p
Failure of human rhombic lip differentiation underlies medulloblastoma formation
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1–4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5–8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES +KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB
Cross-species analysis of SHH medulloblastoma models reveals significant inhibitory effects of trametinib on tumor progression
Abstract Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity
OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells
Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor and is currently divided into four subtypes based on different genomic alterations, gene expression profiles and response to treatment: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. This extensive heterogeneity has made it difficult to assess the functional relevance of genes to malignant progression. For example, expression of the transcription factor Orthodenticle homeobox2 (OTX2) is frequently dysregulated in multiple MB variants; however, its role may be subtype specific. We recently demonstrated that neural precursors derived from transformed human embryonic stem cells (trans-hENs), but not their normal counterparts (hENs), resemble Groups 3 and 4 MB in vitro and in vivo. Here, we tested the utility of this model system as a means of dissecting the role of OTX2 in MB using gain- and loss-of-function studies in hENs and trans-hENs, respectively. Parallel experiments with MB cells revealed that OTX2 exerts inhibitory effects on hEN and SHH MB cells by regulating growth, self-renewal and migration in vitro and tumor growth in vivo. This was accompanied by decreased expression of pluripotent genes, such as SOX2, and was supported by overexpression of SOX2 in OTX2+ SHH MB and hENs that resulted in significant rescue of self-renewal and cell migration. By contrast, OTX2 is oncogenic and promotes self-renewal of trans-hENs and Groups 3 and 4 MB independent of pluripotent gene expression. Our results demonstrate a novel role for OTX2 in self-renewal and migration of hENs and MB cells and reveal a cell-context-dependent link between OTX2 and pluripotent genes. Our study underscores the value of human embryonic stem cell derivatives as alternatives to cell lines and heterogeneous patient samples for investigating the contribution of key developmental regulators to MB progression
Návrh materiálů a jeho technologické zpracování pro výrobu forem na plasty
Import 20/04/2006Prezenční výpůjčkaFakulta strojní a elektrotechnická VŠB (Ostrava). Katedra mechanické technologie (345
Characterization of a novel OTX2‐driven stem cell program in Group 3 and Group 4 medulloblastoma
Medulloblastoma (MB) is the most common malignant primary pediatric brain cancer. Among the most aggressive subtypes, Group 3 and Group 4 originate from stem/progenitor cells, frequently metastasize, and often display the worst prognosis, yet we know the least about the molecular mechanisms driving their progression. Here, we show that the transcription factor orthodenticle homeobox 2 (OTX2) promotes self‐renewal while inhibiting differentiation in vitro and increases tumor initiation from MB stem/progenitor cells in vivo. To determine how OTX2 contributes to these processes, we employed complementary bioinformatic approaches to characterize the OTX2 regulatory network and identified novel relationships between OTX2 and genes associated with neuronal differentiation and axon guidance signaling in Group 3 and Group 4 MB stem/progenitor cells. In particular, OTX2 levels were negatively correlated with semaphorin (SEMA) signaling, as expression of 9 SEMA pathway genes is upregulated following OTX2 knockdown with some being potential direct OTX2 targets. Importantly, this negative correlation was also observed in patient samples, with lower expression of SEMA4D associated with poor outcome specifically in Group 4 tumors. Functional proof‐of‐principle studies demonstrated that increased levels of select SEMA pathway genes are associated with decreased self‐renewal and growth in vitro and in vivo and that RHO signaling, known to mediate the effects of SEMA genes, is contributing to the OTX2 KD phenotype. Our study provides mechanistic insight into the networks controlled by OTX2 in MB stem/progenitor cells and reveals novel roles for axon guidance genes and their downstream effectors as putative tumor suppressors in MB
Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma
Abstract Group 3 medulloblastoma (G3 MB) carries the worst prognosis of all MB subgroups. MYC oncoprotein is elevated in G3 MB tumors; however, the mechanisms that support MYC abundance remain unclear. Using metabolic and mechanistic profiling, we pinpoint a role for mitochondrial metabolism in regulating MYC. Complex-I inhibition decreases MYC abundance in G3 MB, attenuates the expression of MYC-downstream targets, induces differentiation, and prolongs male animal survival. Mechanistically, complex-I inhibition increases inactivating acetylation of antioxidant enzyme SOD2 at K68 and K122, triggering the accumulation of mitochondrial reactive oxygen species that promotes MYC oxidation and degradation in a mitochondrial pyruvate carrier (MPC)-dependent manner. MPC inhibition blocks the acetylation of SOD2 and oxidation of MYC, restoring MYC abundance and self-renewal capacity in G3 MB cells following complex-I inhibition. Identification of this MPC-SOD2 signaling axis reveals a role for metabolism in regulating MYC protein abundance that has clinical implications for treating G3 MB