117 research outputs found

    Does The NFT Market Interact With Major Financial Markets?

    Get PDF

    Parallel structure general repetitive controller for general grid-connected PWM converters

    Get PDF
    This study investigates parallel structure general repetitive control (PSGRC) and its error convergence rate by using exponential function properties. PSGRC offers a general repetitive control solution for power converters to mitigate power harmonics distortions. PSGRC with appropriate settings will lead to various RCs with various error convergence rates at interested harmonic frequencies, e.g. conventional RC, dual-model RC, and odd harmonics RC. As application examples, PSGRC was applied into general grid-connected pulse-width-modulation (PWM) converter systems. Experimental results show the effectiveness and advantages of PSGRC: three/single-phase grid-connected PWM converters can achieve zero-error current tracking and very fast current error convergence rate upon demand

    High Temperature Phase Equilibrium of SiC-Based Materials

    Get PDF

    Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Get PDF
    A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM) was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM) algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model

    Identification of novel SHANK2 variants in two Chinese families via exome and RNA sequencing

    Get PDF
    BackgroundSHANK2 encodes a postsynaptic scaffolding protein involved in synapse formation, stabilization and homeostasis. Variations or microdeletions in the SHANK2 gene have been linked to a variety of neurodevelopmental disorders, including autism spectrum disorders (ASD) and mild to moderate intellectual disability (ID) in human. However, the number of reported cases with SHANK2 defects remains limited, with only 14 unrelated patients documented worldwide.MethodsIn this study, we investigated four patients from three families with ID. Whole-exome sequencing (WES) was performed to explore the genetic causes, while Sanger sequencing was used to confirm the identified variants. Furthermore, RNA sequencing and functional enrichment analysis were performed on patients with likely pathogenic variants to gain further insights into the molecular landscape associated with these variants.ResultsTwo novel variants in the SHANK2 gene: a heterozygous splicing substitution (NM_012309.5:c.2198-1G>A p.Pro734Glyfs*22) in Family 1, and a heterozygous nonsense variant [NM_012309.5:c.2310dupT p.(Lys771*)] in Family 2 were identified by WES and confirmed by Sanger sequencing. RNA sequencing and cohort analysis identified a total of 1,196 genes exhibiting aberrant expression in three patients. Functional enrichment analysis revealed the involvement of these genes in protein binding and synaptic functions.ConclusionWe identified two novel loss of function variants that broadens the spectrum of SHANK2 variants. Furthermore, this study enhances our understanding of the molecular mechanisms underlying SHANK2-related disorders

    A novel prognostic classification integrating lipid metabolism and immune co-related genes in acute myeloid leukemia

    Get PDF
    BackgroundAs a severe hematological malignancy in adults, acute myeloid leukemia (AML) is characterized by high heterogeneity and complexity. Emerging evidence highlights the importance of the tumor immune microenvironment and lipid metabolism in cancer progression. In this study, we comprehensively evaluated the expression profiles of genes related to lipid metabolism and immune modifications to develop a prognostic risk signature for AML.MethodsFirst, we extracted the mRNA expression profiles of bone marrow samples from an AML cohort from The Cancer Genome Atlas database and employed Cox regression analysis to select prognostic hub genes associated with lipid metabolism and immunity. We then constructed a prognostic signature with hub genes significantly related to survival and validated the stability and robustness of the prognostic signature using three external datasets. Gene Set Enrichment Analysis was implemented to explore the underlying biological pathways related to the risk signature. Finally, the correlation between signature, immunity, and drug sensitivity was explored.ResultsEight genes were identified from the analysis and verified in the clinical samples, including APOBEC3C, MSMO1, ATP13A2, SMPDL3B, PLA2G4A, TNFSF15, IL2RA, and HGF, to develop a risk-scoring model that effectively stratified patients with AML into low- and high-risk groups, demonstrating significant differences in survival time. The risk signature was negatively related to immune cell infiltration. Samples with AML in the low-risk group, as defined by the risk signature, were more likely to be responsive to immunotherapy, whereas those at high risk responded better to specific targeted drugs.ConclusionsThis study reveals the significant role of lipid metabolism- and immune-related genes in prognosis and demonstrated the utility of these signature genes as reliable bioinformatic indicators for predicting survival in patients with AML. The risk-scoring model based on these prognostic signature genes holds promise as a valuable tool for individualized treatment decision-making, providing valuable insights for improving patient prognosis and treatment outcomes in AML

    Effects of seawater acidification and solar ultraviolet radiation on photosynthetic performances and biochemical compositions of Rhodosorus sp. SCSIO-45730

    Get PDF
    Ocean acidification (OA) caused by rising atmospheric CO2 concentration and solar ultraviolet radiation (UVR) resulting from ozone depletion may affect marine organisms, but little is known regarding how unicellular Rhodosorus sp. SCSIO-45730, an excellent species resource containing various biological-active compounds, responds to OA and UVR. Therefore, we conducted a factorial coupling experiment to unravel the combined effects of OA and UVR on the growth, photosynthetic performances, biochemical compositions and enzyme activities of Rhodosorus sp. SCSIO-45730, which were exposed to two levels of CO2 (LC, 400 μatm, current CO2 level; HC, 1000 μatm, future CO2 level) and three levels of UVR (photosynthetically active radiation (PAR), PAR plus UVA, PAR plus UVB) treatments in all combinations, respectively. Compared to LC treatment, HC stimulated the relative growth rate (RGR) due to higher optimum and effective quantum yields, photosynthetic efficiency, maximum electron transport rates and photosynthetic pigments contents regardless of UVR. However, the presence of UVA had no significant effect but UVB markedly reduced the RGR. Additionally, higher carbohydrate content and lower protein and lipid contents were observed when Rhodosorus sp. SCSIO-45730 was cultured under HC due to the ample HCO3− applications and active stimulation of metabolic enzymes of carbonic anhydrase and nitrate reductase, thus resulting in higher TC/TN. OA also triggered the production of reactive oxygen species (ROS), and the increase of ROS coincided approximately with superoxide dismutase and catalase activities, as well as phenols contents. However, UVR induced photochemical inhibition and damaged macromolecules, making algal cells need more energy for self-protection. Generally, these results revealed that OA counteracted UVR-related inhibition on Rhodosorus sp. SCSIO-45730, adding our understanding of the red algae responding to future global climate changes

    Plant–plant interactions vary greatly along a flooding gradient in a dam-induced riparian habitat

    Get PDF
    Plant–plant interactions under extreme environmental stress are still controversial. The stress gradient hypothesis (SGH) proposes that facilitation prevails under extreme environmental stresses, while an alternative view states that facilitation collapses or even switches back to competition at the extreme end of stress gradients. However, how the relationship between plant–plant interaction and periodic extreme flooding stress varies and its underlying mechanism are still unclear in a dam-regulated riparian ecosystem. We established a controlled experiment using two dominant species pairs (Cynodon dactylon–Cyperus rotundus and C. dactylon–Xanthium sibiricum) in the water level fluctuating zone of the Three Gorges Dam to examine their growth responses to the periodic extreme flooding stress. The results showed that as flooding stress increased, the competitive effect of C. dactylon on X. sibiricum shifted to facilitation, whereas the effect of X. sibiricum on C. dactylon maintained a strong inhibition. The plant height of X. sibiricum was the most important driver of the interaction between X. sibiricum and C. dactylon along the flooding gradient. The net effect of C. dactylon on C. rotundus shifted from neutral to negative, and the inhibitory effect of C. rotundus on C. dactylon became stronger at the extreme end of flooding stress. The root biomass of the two species was the key trait regulating their interaction with increasing flooding stress. Overall, the SGH was partially supported along our periodic extreme flooding stress gradient. Aboveground resource (light) might be the dominant factor driving the response of the interaction between annual plants and perennial clonal plants to periodic flooding stress, whereas belowground resource (water and nutrients) was probably the dominant factor for perennial clonal plants. Our study will help to further understand the environmental responses of plant–plant relationships and their regulatory mechanism, and the succession of riparian plant communities under extreme environmental changes, providing a basic theoretical basis and data support for the ecological restoration and management of riparian wetland vegetation

    Designing robust schedule coordination scheme for transit networks with safety control margins

    Get PDF
    We propose a robust schedule coordination scheme which combines timetable planning with a semi-flexible departure delayed control strategy in case of disruptions. The flexibility is provided by allowing holding for the late incoming bus within a safety control margin (SCM). In this way, the stochastic travel time is addressed by the integration of real-time control and slacks at the planning phase. The schedule coordination problem then jointly optimises the planning headways and slack times in the timetable subject to SCM. Analytical formulations of cost functions are derived for three types of operating modes: uncoordinated operation, departure punctual control and departure delayed control. The problem is formulated as a stochastic mixed integer programming model and solved by a branch-and-bound algorithm. Numerical results provide an insight into the interaction between SCM and slack times, and demonstrate that the proposed model leads to cost saving and higher efficiency when SCM is considered. Compared to the conventional operating modes, the proposed method also presents advantages in transfer reliability and robustness to delay and demand variation

    Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC.

    Get PDF
    BACKGROUND: To establish the feasibility of the dosimetric compliance criteria of the RTOG 1308 trial through testing against Intensity Modulation Radiation Therapy (IMRT) and Passive Scattering Proton Therapy (PSPT) plans. METHODS: Twenty-six lung IMRT and 26 proton PSPT plans were included in the study. Dose Volume Histograms (DVHs) for targets and normal structures were analyzed. The quality of IMRT plans was assessed using a knowledge-based engineering tool. RESULTS: Most of the RTOG 1308 dosimetric criteria were achieved. The deviation unacceptable rates were less than 10 % for most criteria; however, a deviation unacceptable rate of more than 20 % was computed for the planning target volume minimum dose compliance criterion. Dose parameters for the target volume were very close for the IMRT and PSPT plans. However, the PSPT plans led to lower dose values for normal structures. The dose parameters in which PSPT plans resulted in lower values than IMRT plans were: lung V5Gy (%) (34.4 in PSPT and 47.2 in IMRT); maximum spinal cord dose (31.7 Gy in PSPT and 43.5 Gy in IMRT); heart V5Gy (%) (19 in PSPT and 47 in IMRT); heart V30Gy (%) (11 in PSPT and 19 in IMRT); heart V45Gy (%) (7.8 in PSPT and 12.1 in IMRT); heart V50% (Gy) (7.1 in PSPT and 9.8 in IMRT) and mean heart dose (7.7 Gy in PSPT and 14.9 Gy in IMRT). CONCLUSIONS: The revised RTOG 1308 dosimetric compliance criteria are feasible and achievable
    • …
    corecore