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Background: As a severe hematological malignancy in adults, acute myeloid

leukemia (AML) is characterized by high heterogeneity and complexity. Emerging

evidence highlights the importance of the tumor immune microenvironment

and lipid metabolism in cancer progression. In this study, we comprehensively

evaluated the expression profiles of genes related to lipid metabolism and

immune modifications to develop a prognostic risk signature for AML.

Methods: First, we extracted the mRNA expression profiles of bone marrow

samples from an AML cohort from The Cancer Genome Atlas database and

employed Cox regression analysis to select prognostic hub genes associated

with lipid metabolism and immunity. We then constructed a prognostic signature

with hub genes significantly related to survival and validated the stability and

robustness of the prognostic signature using three external datasets. Gene Set

Enrichment Analysis was implemented to explore the underlying biological

pathways related to the risk signature. Finally, the correlation between

signature, immunity, and drug sensitivity was explored.

Results: Eight genes were identified from the analysis and verified in the clinical

samples, including APOBEC3C, MSMO1, ATP13A2, SMPDL3B, PLA2G4A,

TNFSF15, IL2RA, and HGF, to develop a risk-scoring model that effectively

stratified patients with AML into low- and high-risk groups, demonstrating

significant differences in survival time. The risk signature was negatively related

to immune cell infiltration. Samples with AML in the low-risk group, as defined by

the risk signature, were more likely to be responsive to immunotherapy, whereas

those at high risk responded better to specific targeted drugs.

Conclusions: This study reveals the significant role of lipid metabolism- and

immune-related genes in prognosis and demonstrated the utility of these

signature genes as reliable bioinformatic indicators for predicting survival in
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1290968/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1290968/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1290968/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1290968/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1290968&domain=pdf&date_stamp=2023-11-10
mailto:hnzzzwzx@sina.com
mailto:songwp920@163.com
https://doi.org/10.3389/fimmu.2023.1290968
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1290968
https://www.frontiersin.org/journals/immunology


Abbreviations: AML, acute myeloid leukemia; GSE

Analysis; IRG, immune-related gene; LMRG, lipid met

overall survival; exp, expression; ROC, receiver operat

The Cancer Genome Atlas; TIDE, tumor immune dys

Li et al. 10.3389/fimmu.2023.1290968

Frontiers in Immunology
patients with AML. The risk-scoring model based on these prognostic signature

genes holds promise as a valuable tool for individualized treatment decision-

making, providing valuable insights for improving patient prognosis and treatment

outcomes in AML.
KEYWORDS

acute myeloid leukemia, lipid metabolism, immunotherapy, drug sensitivity,
prognostic signature
1 Introduction

Acute myeloid leukemia (AML) is characterized by a clinically,

epigenetically, and genetically heterogeneous disease with poor

outcomes (1). Despite being initially sensitive to chemotherapy,

most patients with AML ultimately experience relapse and die of

progressive disease. Therefore, there is an urgent need for alternative

treatment solutions. Advances in epigenomic and genomic

characterization of AML have paved the way for the development

and approval of novel targeted agents (2). Immunotherapy is also a

promising strategy for long-term disease control. However, acquired

resistance to targeted agents and a low response to immunotherapy

still cause treatment failure (3). Thus, novel therapeutic targets and

prognostic biomarkers are urgently required to guide clinical practice

and predict the survival of patients with AML.

Emerging evidence suggests thatmetabolic disruptions, particularly

those involving certain metabolites and associated pathways, are crucial

factors in the development and progression of leukemia. Lipids and

their derivatives play critical roles in energy generation and form the

structural basis of cellular and organelle membranes. Extensive

research conducted over numerous years has explored the impact of

lipid metabolism on AML, leading to recent breakthroughs (4). As a

lipid category, fatty acids represent an appealing therapeutic target that

supports increased biomass, membrane biogenesis, energy production,

and lipoprotein generation in dividing AML cells (5). AML is

associated with the overexpression and constant activation of

sphingosine kinase 1, an enzyme responsible for producing

sphingosine 1-phosphate from sphingosine. Remarkably, the

inhibition of sphingosine kinase 1 induces apoptosis in AML blasts

and leukemic stem cells obtained from patients (6, 7). Consequently,

control of lipid metabolism reprogramming has emerged as a

promising therapeutic target for enhancing the prognosis of

individuals diagnosed with AML. Therefore, we previously

constructed a prognostic signature with high specificity and

sensitivity for estimating the prognosis of AML patients based on

lipid metabolism-related genes (LMRGs) (8). The findings showed that

the risk signature had remarkable specificity and sensitivity in

estimating the outcomes of AML patients. And, consistent with the
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findings of other studies, interventions aimed at modulating lipid

metabolism have the potential to impact not only tumor cells, but

also immune cells (9, 10). We found that the lipid metabolism-related

risk signature was closely associated with the immune tumor

microenvironment (TME) and response to immunotherapy in AML.

As is same to solid tumor cells, AML cells are capable of

developing an immunosuppressive microenvironment in which

both adaptive and innate immune responses are profoundly

disrupted (11, 12). Emerging evidence indicates that lipids are

crucial for driving this dysregulated state. In acidic, hypoxic, and

nutrition-deficient TMEs, both the cancer and immune cells tend to

depend on the lipids for energy storage, building cellular

membranes, and generating signaling molecules. Consequently,

the dysregulation of lipid metabolism within the TME can have a

profound impact on tumorigenesis, subsequent progression, and

metastasis. Within this complex TME, lipids act as double-edged

swords capable of either supporting antitumor or promoting pro-

tumor immune responses (9, 12). These contradictory results

present a dilemma, as simply inhibiting or stimulating a single

lipid metabolic pathway within the TME fails to achieve optimal

results. The models constructed with a single feature exhibited

relatively weaker validity and robustness than those constructed

with multiple features. Therefore, there is an urgent need for a

comprehensive understanding of a multi-featured signature model

specifically tailored for patients with AML, along with an

exploration of its prognostic implications.

In this study, we integrated genes related to immunity and lipid

metabolism to develop a prognostic signature based on the

interactions between antitumor immunity and lipid metabolism.
2 Materials and methods

2.1 Data collection and preparation

The clinical data and RNA-sequencing profile of the patients

with AML (Supplementary Table 1) came from The Cancer

Genome Atlas (TCGA) database (https://www.cancer.gov/tcga/).

Prior to analysis, all transcriptome data for fragments per

kilobase of transcript per million mapped reads were log-

transformed and subsequently converted to transcripts per

million. Baseline features of the AML patients involved in the risk

signature are displayed in Supplementary Table 2.
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For external validation, three independent datasets (GSE12417,

GSE37642, and GSE71014) along with the clinical data were acquired

from the GEO database, available at https://www.ncbi.nlm.nih.gov/geo/.
2.2 Identification of immune- and lipid
metabolism-related prognostic genes

Here, we incorporated a comprehensive approach to identify

genes associated with lipid metabolism. Specifically, we included all

genes from 34 LMRG sets sourced from the Molecular Signature

Database (MsigDB; available at https://www.gsea-msigdb.org/gsea/

msigdb/) (13). By considering the intersection of these gene sets, we

derived a final set of 1,996 LMRGs. For detailed information

regarding the LMRG sets, please refer to Supplementary Table 3. A

collection of 1,793 immune-related genes was acquired from the

ImmPort database, available at https://www.immport.org/ (14).

Details of the immune-related genes (IRGs) are displayed in

Supplementary Table 4. The integration of LMRGs and IRGs was

performed to conduct a prognostic analysis of AML, and 180

prognostic genes (p <0.01) were acquired for the subsequent analyses.
2.3 Development and validation of a
prognostic lipid metabolism and immune
co-related signature

A total of 144 samples from the AML cohort in the TCGA database

were then randomly divided into the training (N = 72) and validation

(N = 72) datasets in a 1:1 ratio. First, we used univariate Cox regression

to identify LMRGs and IRGswith prognostic role in the training dataset.

Then, least absolute shrinkage and selection operator (LASSO) Cox

regression analysis with the R package (version 3.6.1) “glmnet,” a novel

risk-scoring model with eight genes was developed as follows:

Risk score = expAPOBEC3C × 0.188873061 + expMSMO1 ×

0.176721847 + expATP13A2 × 0.096045519 + expSMPDL3B

× 0.077828708 + expPLA2G4A × 0.071836509 + expTNFSF15 ×

0.027983123 + expIL2RA × 0.022815855 – expHGF × 0.044508523

Subsequently, patients with AML in the training dataset were

classified into low-risk group and the high-risk group by the median

cutoff risk score. The Kaplan-Meier survival curve was performed to

compare the differences between the two risk groups. The receiver

operating characteristic (ROC) curves were constructed to assess

the validity of the risk signature.

The validity of the risk signature was verified using samples

from the GSE12417, GSE37642, and GSE71014 cohorts. The same

analyses used for the training dataset were used to calculate the risk

scores of samples from the GEO cohorts.
2.4 Clinical correlation
and subgroup analyses

To assess the clinical significance and prognostic utility of the

risk signature, we extracted the clinical data of 144 patients with

AML in the TCGA database, and these variables included age
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(>= 60 years or < 60 years), gender (female or male), chromosome

status (normal or abnormal), and gene mutation (FLT3, NPM1, RAS,

and IDH1mutation or not) (Supplementary Table 5). Then, Kaplan–

Meier curves were initially generated to explore the prognostic role of

each gene included in the risk signature (15).
2.5 Functional enrichment analysis

The TCGA database contained genomic data from 144 samples

in the AML cohort, which were classified into either high-risk or

low-risk groups based on their risk score. Using the GSEA v4.1.0

software (https://www.gsea-msigdb.org/gsea/index.jsp), the

hallmark gene set (h.all.v7.2.symbols.gmt) was employed for

enrichment analysis, with the phenotypic label being the high-risk

group versus the low-risk group. The number of permutations used

was 1000, while all other settings were set to default values (13).

Statistically significant findings were defined as p <0.05 and q <0.05.
2.6 Nomogram construction
and assessment

By integrating the risk scores and clinical data of 144 patients

with AML in the TCGA database, we constructed nomogram

survival models for overall survival (OS) by the “rms” R package,

incorporating both univariate and multivariate results. The

calibration curve estimate was then adjusted for optimism by

using a bootstrap procedure (16). In addition, ROC curves were

generated to validate the predictive capacity of the risk signature

with clinical characteristics.

A total of 144 patients with AML in the TCGA database were

classified into low-risk group and the high-risk group by the median

cutoff risk score. The CIBERSORT algorithm was performed to

estimate the infiltration levels of various immune cell types (17).

Tumor immune dysfunction and exclusion (TIDE) data for AML

was acquired from http://tide.dfci.harvard.edu/. The TIDE

algorithm was developed to generate TIDE scores and to

accurately evaluate the response of immunotherapy agents in

patients with cancer (18). Lower TIDE scores indicate better

outcomes. The immunotherapy response of each patient was

evaluated by the gene expression profiles.
2.8 Pharmaceutical screening

A total of 144 patients with AML in the TCGA database were

classified into low-risk group and the high-risk group by the median

cutoff risk score. Then, we employed the “pRRophetic” R package in

the Genomics of Drug Sensitivity in Cancer (GDSC) database to

determine the varying susceptibilities to the drug between high- and

low-risk groups. The half maximal inhibitory concentration (IC50)

value, which indicates the concentration at which cell growth is

inhibited by 50%, was used as a metric of drug sensitivity (19, 20).

Stringent filtration conditions (p <0.01) were used.
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2.9 Quantitative real-time PCR

Details of the PCR operation was carried out in accordance with

previous study (21). Samples of health donor and patients with

AML were collected from Henan Cancer Hospital and approved by

Medical Ethics Committee of The Affiliated Cancer Hospital of

Zhengzhou University (approval no. 2023-KY-0104-001). The PCR

primers were purchased from SangonBiotech (Sangon, Zhengzhou,

China). And, the primer sequences in this study were showed in the

Supplementary Table 6.
3 Results

3.1 Construction of an eight-gene
signature with high accuracy
of prognosis prediction

Briefly, 1,996 LMRGs and 1,793 IRGs in AML were included, of

which 180 candidate prognostic genes were subsequently identified

using univariate Cox regression analysis (Figure 1A). LASSO Cox

regression analysis finally identified eight crucial genes for lipid

metabolism- and immune-related prognostic signatures according

to the optimal l value (Figures 1B, C). Among them, there were five

LMRGs (MSMO1, ATP13A2, SMPDL3B, PLA2G4A, and TNFSF15)

and three IRGs (APOBEC3C, IL2RA, andHGF). Except forHGF, all

other seven signature genes are detrimental factors with a hazard

ratio (HR) >1. The risk score for each AML sample in this study was

calculated by the formula described in Section 2.3.

The median risk score was regarded as the cut-off value to

classify the training TCGA cohort into the high-risk and low-risk

groups (Figure 2A). The scatter plot indicated that high-risk

patients were significantly associated with a high mortality rate

compared to that of low-risk patients (Figure 2B). The gene

expression heatmap illustrates that, except for HGF, all other

seven signature genes were upregulated in the high-risk group

(Figure 2C). Kaplan-Meier curve analysis demonstrated that high-

risk patients suffered significantly worse survival outcomes than

low-risk ones (Figure 2D). The AUC reached 0.807, 0.848, and

0.843 at 1, 3, and 5 years, respectively (Figure 2E). In addition,
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results for the testing and entire datasets were consistent with those

from the training dataset (Figures 3A–E). The above results

demonstrated that the potential prognostic signature showed

great specificity and sensitivity in estimating the prognosis of

AML patients.
3.2 External validation of the risk signature
in the GEO cohorts

To validate the predictive reliability of this prognostic signature,

we screened and included three GEO datasets as external validation

cohorts. After calculating the risk scores for each sample in these

datasets, we assigned patients to high- and low-risk groups by the

median cut-off value of these scores. Survival analyses performed on

all three validation datasets consistently demonstrated that in the

high-risk patients with AML experienced significantly worse OS

outcomes than the low-risk ones (GSE37642, p = 0.00041;

GSE71014, p = 0.0098; GSE12417, p = 0.046) (Figures 4A–C).
3.3 Correlation between the clinical
characteristics and prognostic signature

To assess the clinical significance and prognostic utility of the

risk signature, Kaplan-Meier curves were initially generated to

explore the prognostic role of each gene included in the risk

signature. These variables included age (>= 60 years or < 60

years), gender (female or male), chromosome status (normal or

abnormal), and gene mutation status (FLT3, NPM1, RAS, and

IDH1 mutation or not). The results revealed that regardless of the

clinicopathological features, high-risk patients tend to have the

worst OS outcomes, indicating the stable performance of the

prognostic risk signature (Figures 5A–N).
3.4 Nomogram analysis

Univariate combined with multivariate Cox regression analyses

were preformed to explore whether the risk signature and
B CA

FIGURE 1

Development of the prognostic risk signature in the training dataset. (A) The least absolute shrinkage and selection operator (LASSO) model was
subjected to ten fold cross-validation for variable selection. (B) LASSO coefficient profile of identified crucial genes. (C) Coefficient profile of the
eight prognostic genes.
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clinicopathological parameters, including age, sex, chromosomal

status, and gene mutations, were the independent prognostic

factors. The results showed that the risk scores (HR = 3.02; 95%

CI 2.79-3.25) and age (HR = 2.42; 95% CI 2.2-2.65) were the

independent prognostic factors for survival (Figures 6A, B). In

addition, a nomogram was developed using age and risk scores to
Frontiers in Immunology 05
accurately predict the survival rates at 1-, 3-, and 5-year in patients

with AML, which suggested that a higher total score suggested

worse survival. The result showed that the prognostic signature had

the greatest impact on OS (Figure 6C). Meanwhile, the calibration

curve demonstrated a strong agreement between the predicted and

observed OS at 1-, 3-, and 5-year intervals, indicating the excellent

predictive accuracy of the prognostic signature (Figures 6D–F).

Furthermore, the 1-, 3-, and 5-year survival ROC analyses showed

that the AUCs for the nomogram and risk scores were superior to

the other variables, such as age, chromosomal status, sex, as well as

FLT3, NPM1, RAS, and IDH1 mutations (Figures 6G–I). These

results showed that the nomogram and risk score provided a higher

practical value for prognostic prediction than the other variables.
3.5 Biological functions and pathway
analysis

GSEA was performed between the two risk groups to identify

the underlying biological functions and pathways associated with

the risk score. The results indicated that interferon g, inflammatory,

and interferon a responses, as well as TNFa signaling via NF-kB,
complement, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling,

allograft rejection, hypoxia, and KRAS signaling pathway were

enriched, which are central in mediating host responses to

inflammation and antitumor immunity (Figure 7).
3.6 Correlation between the
prognostic signature and tumor
immune microenvironment

As the antitumor immunity-related signaling pathways were

significantly enriched in the GSEA analysis, we evaluated the

correlation of the prognostic risk signature with immune state in

each patient with AML. CIBERSORT algorithm was performed to

estimate the infiltration levels of various immune cell types in the

TME. The results demonstrated that high-risk patients had a lower

fraction of activated dendritic cells, CD56dim NK cells, effector

memory CD4 T cells, macrophages, immature B cells, MDSCs, NK

cells, NK T cells, neutrophils, T follicular helper cells, plasmacytoid

dendritic cells, and type 1 T helper cells (Figure 8A). Then, the

immune scores and the TIDE scores of each sample were calculated,

and the results demonstrated that the high-risk samples hold lower

immune scores and higher TIDE scores than the low-risk samples

(Figures 8B, C), indicating that high-risk patients were associated

with enhanced tumor immune escape ability. Moreover, we

assessed the disparity in the response rates to immunotherapy

between the two risk groups. Notably, the samples from the low-

risk group exhibited higher immunotherapy response rates than

those from the high-risk group (Figure 8D). Based on these

outcomes, we ascertained that the risk signature could indicate

the immune cell infiltration and the response to immunotherapy

in AML.
B

C

D

E

A

FIGURE 2

Performance of the prognostic signature in the training dataset.
(A) The risk curve of each AML sample was defined by risk score.
(B) Scatter plots showing the survival status of each sample. (C) Heat
map of the expression of the eight selected genes. (D) Kaplan-Meier
survival curves between the two risk groups. (E) The receiver
operating characteristic (ROC) curves for overall survival at 1, 3, and
5 years.
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3.7 Drug sensitivity analysis

Thereafter, the pRRophetic package were used to further analyze

the sensitivity of antitumor drugs based on the IC50 available in the

GDSC database for patients with AML (19, 20). In our study, we

successfully identified a total of 198 small molecular compounds that

exhibited significantly diverse responses between the high-risk and

low-risk groups (Supplementary Table 7). The results showed that the

high-risk group showed a lower sensitivity to BI2536 (PLK1 inhibitor)
Frontiers in Immunology 06
and SB-505124 (TGFbR inhibitor), whereas they were sensitive to

several other drugs such as AZD2014 (mTOR inhibitor), pictilisib

(PI3Ka/d inhibitor), MK-2206 (Akt inhibitor), dactolisib (dual pan-

class I PI3K and mTOR kinase inhibitor), afatinib (EGFR inhibitor),

rapamycin (FRAP/mTOR inhibitor), and taselisib (PI3K inhibitor

targets PIK3CA mutations), even though none of these is currently

used in the treatment of AML (Figure 9). The outcomes of our study

offer promising molecular candidates for targeted therapy that can be

utilized in the treatment of AML patients.
B

C

D

E

A

FIGURE 3

Performance of the prognostic signature in the testing and entire datasets. (A) The risk curve of each AML sample was defined by risk score.
(B) Scatter plots showing the survival status of each sample. (C) Heat map of the expression of the eight selected genes. (D) Kaplan-Meier survival
curves between the two risk groups. (E) The receiver operating characteristic (ROC) curves for overall survival at 1, 3, and 5 years.
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4 Discussion

Here, we studied the role of LMRGs and IRGs in the prognosis

of patients with AML. By analyzing large-scale genomic and clinical

datasets from TCGA and GEO databases, we identified an eight-
Frontiers in Immunology 07
gene signature that demonstrated robust prognostic value and

potential clinical applications in AML. We performed additional

analysis on the expression of eight signature genes in the high and

low-risk groups across multiple cohorts, including TCGA,

GSE12417, GSE37642, and GSE71014. The findings demonstrated
B C D

E F G H

I J K L

M N

A

FIGURE 5

Relationships between the prognostic signature and clinicopathological characteristics. (A) Age >= 60 years, (B) Age < 60 years, (C) Female, (D) Male,
(E) Normal chromosome, (F) Abnormal chromosome, (G) No FLT3 mutation, (H) FLT3 mutation, (I) No NPM1 mutation, (J) NPM1 mutation, (K) No
RAS mutation, (L) RAS mutation, (M) IDH1 mutation, (N) IDH1 mutation.
B CA

FIGURE 4

Survival analyses performed on all three GEO validation datasets. (A) GSE37642: p = 0.00041, (B) GSE71014: p = 0.0098, (C) GSE12417: p = 0.046).
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that MSMO1, ATP13A2, SMPDL3B, PLA2G4A, TNFSF15,

APOBEC3C, and IL2RA were upregulated in the high-risk group,

whereas HGF was downregulated. Survival analysis indicated that

patients with high expression of these signature genes, except for

HGF, experienced worse OS outcomes. These results provide

further evidence that these genes may function as detrimental

factors , while HGF may serve as a protective factor

(Supplementary Figures 1 and 2). The relative expression of these
Frontiers in Immunology 08
eight signature genes were also detected in the clinical samples

(Supplementary Figure 3).

APOBEC3C is a member of the APOBEC family that plays

important but distinct roles in host defense and mediates C-to-T

mutagenesis in cancers. A previous study indicated a negative

correlation between APOBEC3C mRNA expression and base

substitution mutations in estrogen receptor-negative breast cancer

(22). Qian et al. found that APOBEC3C was significantly
B

C

D E F

G H I

A

FIGURE 6

Construction and validation of the nomogram. (A, B) Univariate and multivariate Cox regression of the prognostic signature and clinical characteristics.
(C) The developed nomogram to estimate the survival possibilities of patients with AML. (D-F) Calibration blots of the agreement between the predicted
overall survival and observed overall survival at 1, 3, and 5 years. (G–I) The ROC curves for overall survival at 1, 3, and 5 years.
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upregulated in pancreatic ductal adenocarcinoma compared with

that in normal pancreatic tissues and predicted worse survival rates

(23). Jiang et al. found that increased APOBEC3C expression was

related to hematopoietic stem and progenitor cell proliferation and

an increased C-to-T mutational burden during disease progression

in patients with myeloproliferative neoplasm (24).

Methylsterol monooxygenase 1 (MSMO1), an intermediate

enzyme involved in cholesterol and fatty acid biosynthesis, acts as
Frontiers in Immunology 09
a novel mediator of chemoresistance in cancer (25). A previous

study revealed that MSMO1 plays crucial roles in tumorigenesis and

progression and is a promising prognostic biomarker for cervical

squamous cell carcinoma (26).

ATPase cation transporting 13A2 (ATP13A2/PARK9), a late

endolysosomal transporter, regulates membrane association,

cellular a-synuclein multimerization, and externalization and is

genetically implicated in neurodegenerative disorders (27). Zhang
FIGURE 7

Top 10 significantly enriched pathways in the GSEA.
B C D

A

FIGURE 8

Relationship between the prognostic signature and tumor microenvironment. Correlation of the risk score with (A) immune infiltration level,
(B) immune score, (C) tumor immune dysfunction and exclusion (TIDE) score, and (D) immunotherapy response. *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001, ns, not statistically significant.
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et al. revealed that ATP13A2 activates the pentose phosphate

pathway via the TFEB-PGD axis to facilitate colorectal cancer

growth (28).

As the negative regulator of Toll-like receptor signaling,

Sphingomyelin Phosphodiesterase Acid Like 3B (SMPDL3B)

plays a crucial role in innate immunity and at the interface of

membrane biology. Qu et al. demonstrated that SMPDL3B

expression indicates poor prognosis and contributes to AML

progression (29).

The cytosolic phospholipase, PLA2G4A, is crucial for the

pathogenesis of FLT3-ITD-mutated AML (30). Higher PLA2G4A

expression results in worse OS and mutations in NRAS, which are

known to contribute to the development of myelodysplastic

syndrome development (31).

Tumor necrosis family superfamily member 15 (TNFSF15)

promotes lymphatic metastasis by upregulating vascular

endothelial growth factor-C in a lung cancer mouse model (32).

Lu et al. showed that increased TNFSF15 expression indicates worse

prognosis in oral cancer (33).
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Excessive expression of IL2RA, the gene encoding the alpha

chain of the interleukin-2 receptor, has been linked to

chemotherapy resistance and unfavorable outcomes in AML (34).

IL2RA enhances cell proliferation and cell cycle activity while

suppressing apoptosis in both human AML cell lines and primary

cells. In two genetically modified mouse models of AML, IL2RA

hampered cell differentiation, facilitated stem cell-like

characteristics, and was essential for leukemia development.

Antibodies targeting IL2RA have demonstrated the ability to

inhibit leukemic cells without affecting normal hematopoietic

cells, and their combined effects with other anti-leukemic agents

have shown potential synergy. Consequently, IL2RA is a promising

therapeutic target in AML because it regulates key processes, such

as proliferation, differentiation, apoptosis, stem cell-related

properties, and leukemogenesis (35).

As a multifunctional cytokine, hepatocyte growth factor (HGF)

regulates cell growth, movement, and tissue regeneration in various

epithelial cells (36). HGF binds to its receptor c-Met and activates its

kinase activity, initiating signaling pathways such as JAK/STAT3,
B C

D E F

G H I

A

FIGURE 9

Drug sensitivity analysis. (A) SB-505124, (B) BI2536, (C) AZD2014, (D) pictilisib, (E) MK-2206, (F) dactolisib, (G) afatinib, (H) rapamycin, and (I)
traselisib. **p <0.01, ***p <0.001, ****p <0.0001.
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PI3K/Akt/NF-kB, and Ras/Raf. Aberrations in the HGF/MET pathway

act as diagnostic, predictive, and prognostic biomarkers for cancers

(37). HGF has been discovered to regulate the activity of various

immune cell types, including B cells, T cells, and natural killer cells,

which are important components of the anti-tumor immune response.

By enhancing the immune surveillance and anti-tumor effects, HGF

may contribute to reducing the risk of AML development or

progression. While, it’s worth noting that the exact mechanisms by

whichHGF influences AML risk are still being investigated, and further

studies are required to fully reveal its role in the disease. Nonetheless,

the association between HGF and a reduced risk in AML highlights the

potential importance of this growth factor in the development and

treatment of the disease.

The risk score defined by the prognostic signature defined in

this study effectively stratified patients with AML into low- and

high-risk groups with significantly different survival outcomes.

These results are consistent with those of the external validation

cohorts from the GEO dataset. Regardless of age, sex, cytogenetic

abnormalities, or gene mutations, patients in the high-risk group

consistently exhibited worse OS outcomes, further supporting the

reliability and generalizability of the prognostic risk signature.

To enhance the clinical utility of our findings, we constructed

nomograms that integrated the risk scores derived from the eight-

gene signature with other clinical factors. The ROC and calibration

curves further confirmed the higher predictive accuracy of the

prognostic signature and nomograms compared with the clinical

variables, such as age, sex, cytogenetic abnormalities, and gene

mutations, indicating their potential as reliable tools for

personalized treatment decision-making.

GSEA between the two risk groups sheds light on the

underlying biological mechanisms associated with the prognostic

signature. Many antitumor immunity-related pathways were

enriched, suggesting the involvement of immune dysregulation in

AML prognosis. This could lead to the distinction in the

immunotherapy response against cancer and the treatment

response between the two risk groups.

Then, the correlation between the immune cell infiltration and

risk score was explored. The low-risk group showed higher

proportions of effector memory CD4 T cells, macrophages, NK

cells, NK T cells, T follicular helper cells, Type 1 T helper cells, and

other immune cell subtypes. The negative correlation between the

immune cell infiltration and risk score suggests that patients in the

high-risk group may have impaired immune status. The immune

and immune escape scores were then calculated, and the results

demonstrated a poorer immune state and stronger immune escape

ability in the high-risk group, which may affect the response to

immunotherapy. Furthermore, in the high-risk group, there was a

notable decrease in the expression level of common immune

checkpoints such as PD1, PDL1, PDL2, and CTLA4

(Supplementary Figure 4). These findings indicate that the

identified signature holds promise as a valuable tool for assessing

the effectiveness of immunotherapy in individuals with AML.

Additionally, our prediction results of the immunotherapy
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response rate further verified this conclusion, which showed that

low-risk patients had higher immunotherapy response rates than

that of high-risk patients. This finding highlights the potential

importance of immune modulation in AML treatment. Future

research could focus on understanding the underlying

mechanisms that contribute to immune suppression in high-risk

patients and explore strategies to enhance immune cell function in

these individuals.

In line with the potential impact on the immunotherapy

response, we evaluated the sensitivity of AML patients to

antitumor drugs using pRRophetic packages. Our results

indicated that the high-risk patients exhibited higher sensitivity to

some potential drugs. This finding could be relevant for treatment

selection and personalized therapeutic approaches in AML as it

implies that high-risk patients may be more sensitive to specific

antitumor drugs, which targeted to PI3K–AKT–mTOR signaling

pathways. PI3K-AKT-mTOR signaling pathway is one of the most

abnormal signal pathways in human cancer including AML, which

is involved in the control of cell metabolism, proliferation,

movement, growth and survival and many other cellular

processes (38). Inhibition of PI3K-AKT-mTOR pathway is an

important strategy for tumor therapy. However, the effects of

these inhibitors seem to vary greatly among patients with AML

(39, 40). So far, no clear mutation characteristics or other

pathological processes associated with the disease have been

detected to predict treatment response. Our results provide a

valuable tool for individualized treatment decision-making of

these drugs in AML.

It is important to acknowledge the limitations of this study.

First, although we utilized large-scale datasets for the analysis, the

retrospective nature of the study design may introduce inherent

biases. Prospective studies are warranted to validate our findings

and to assess the clinical utility of prognostic signatures and

nomograms for real-time patient management. Further functional

experiments and in-depth mechanistic investigations are required

to elucidate the precise roles of the identified LMRGs and IRGs in

AML pathogenesis and treatment responses.

In conclusion, our study presents a comprehensive analysis of

the prognostic value and clinical implications of an eight-gene

signature derived from LMRGs and IRGs in AML. This signature

effectively stratified patients into high- and low-risk groups,

demonstrating significant differences in survival outcomes and

potential implications for immune cell infiltration, treatment

response, and drug sensitivity. This opens up avenues for

studying the interplay between lipid metabolism and immune

dysregulation, which may uncover novel therapeutic targets.

Future investigations could explore the manipulation of lipid

metabolism pathways as a means to modulate immune responses

and improve treatment outcomes in AML. Overall, these findings in

this study have several broader implications. They aid in

personalized risk assessment for AML patients, guiding treatment

decisions towards immunotherapy or targeted drugs based on risk

group assignment.
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SUPPLEMENTARY FIGURE 1

The relative expression of eight signature genes in the high- and low-risk
groups from TCGA, GSE37642, GSE71014, and GSE12417 cohorts. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E), PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 2

Correlation of each signature gene and survival in TCGA cohort. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E), PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 3

The relative expression of each signature gene in the clinical samples. (A)
APOBEC3C, (B) MSMO1, (C) ATP13A2, (D) SMPDL3B, (E) PLA2G4A, (F)
TNFSF15, (G) IL2RA, (H) HGF.

SUPPLEMENTARY FIGURE 4

Correlation of risk score and immune checkpoints. (A) PD1, (B) PDL1, (C)
PDL2, (D) CTLA4.
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