
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 480965, 9 pages
http://dx.doi.org/10.1155/2013/480965

Research Article
Mixed Platoon Flow Dispersion Model Based on
Speed-Truncated Gaussian Mixture Distribution

Weitiao Wu, Wenzhou Jin, and Luou Shen

School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China

Correspondence should be addressed to Luou Shen; ctwshen@163.com

Received 13 March 2013; Revised 11 May 2013; Accepted 11 May 2013

Academic Editor: Shuyu Sun

Copyright © 2013 Weitiao Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a
macroscopic mixed platoon flow dispersion model (MPFDM) was proposed to simulate the platoon dispersion process along the
road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture
distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM) algorithm was used for
parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow
distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was
performed between the Robertson model and the MPFDM.The results confirmed the validity of the proposed model.

1. Introduction

Traffic flow in urban areas presents interrupted flow fea-
tures. Due to the compression and splitting by signal lights,
traffic flow is separated into series and moves downstream
in platoons. Vehicles in platoon travel at different speeds
because of the diverse behaviors of drivers and maneuvering
characteristics of vehicles. While moving downstream, the
platoon starts spreading in a longer segment which is called
platoon dispersion. Platoon dispersionmodeling is one of the
key aspects in intelligent transportation system (ITS) area,
which provides theoretical support for signal coordination
control.

Many researchers have worked on the platoon dispersion
topic. Pacey [1] first studied the diffusion problem and
proposed a model assuming that the speed follows normal
distribution ranging from negative to positive infinity. Grace
andPotts [2] further investigated Pacey’smodel from the den-
sity view. Robertson [3], using data collected by Hillier and
Rothery [4], developed a recurrent dispersion model that is
widely used in signal coordination optimization and control
systems such as TRANSYT [5], SCOOT [6], SATURN [7],
and TRAFLO [8]. Seddon [9] found that Robertson’s model

was based on travel time shifted geometric distribution. Tracz
[10] and Polus [11] have shown that vehicular travel time
distribution is not necessarily a shifted geometric distribution
as in Robertson’smodel and ismore consistent with a normal,
lognormal or a gamma distribution. Liu and Yang [12–14]
studied Grace’s model using field data collected in Shanghai,
China, proposed a method to correct the vehicle startup time
loss, and analyzed the problem of the front and rear of the
platoon. Wang et al. [15, 16] developed a platoon dispersion
model under the assumption that the travel time follows
normal distribution and found it to be a better-fitted field data
than Pacey’s assumption. Wei et al. [17] proposed a platoon
dispersion model for cars from the density view assuming
speed following truncated normal distribution.

Robertson’s model in TRANSYT implies dispersion by
the platoon dispersion factor for three external friction levels.
Manar and Baass [18] demonstrate that platoon dispersion
depends not only on external friction but also on internal
friction measured by volume and density and developed
mathematical models relating platoon dispersion to internal
and external frictions. G. C. K. Wong and S. C. Wong [19]
developed a multiclass traffic flow model as an extension
of the LWR model, which considered the heterogeneous
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drivers. Bonneson et al. [20] developed a procedure for
prediction of the arrival flow profile for an intersection
approach considering platoon decay due to mid-segment
driveway access and egress, which tends to have a significant
impact on the arrival flow profile. In a recent study, Cheng
[21] found that the traffic flow on China urban roads presents
a characteristic of mixed vehicle speed distributions. Chen
et al. [22] analyzed the bus-car mixed traffic, and results
show that the bus ration has significant impact on the speed
distribution.

The literature review shows that researchers have doubted
the distribution assumptions of both Pacey’s and Robertson’s
models. However, due to the simplicity of Robertson’s recur-
rent equation, it has received themost popularity.Meanwhile,
very few studies tried to develop a new dispersion model.
Recent researches present a trend investigating the impact of
heterogeneity, mixed flow, and internal frictions on platoon
dispersion.

The traffic on urban arterials in China presents a mixed
flow feature due to the large amount of buses. Typically, buses
run on three types of facilities: normal lanes with mixed
traffic, dedicated bus lanes, and bus rapid traffic (BRT) lanes.

Dedicated bus lanes and BRT lanes are special lanes sepa-
rated from other traffic by roadmarkings or physical barriers,
which present unique operational features. However, urban
arterials in China mostly belong to the first class, which
present mixed traffic flow.

Generally, the percentage of buses in mixed traffic flow
varies from 10% to 25% during peak periods. Mixed platoon
presents special characteristics compared to car platoon
because of the lesser maneuverability of buses and the run-
ning speed constrained by scheduled stops. Previous research
has not been done on bus platoon dispersion modeling, and
no car and bus mixed platoon dispersion model has been
developed either. The investigation of the mixed platoon
dispersion problemwill provide theoretical support for signal
coordination and bus priority control.

2. Model Development

2.1. Speed Density Distribution Assumption. In Pacey’s pla-
toon dispersion model, the speed is assumed following nor-
mal distribution ranging from negative to positive infinity,
which does not properly reflect the field situation. Because
vehicles with speeds V < Vmin and V > Vmax (Vmin and
Vmax denote minimum speed and maximum speed, resp.)
are rarely observed in the actual world, which is confirmed
by field data as shown in the data acquisition and analysis
section given below, therefore, the assumed speed following
truncated distribution ranging from Vmin to Vmax is more suit-
able. The distribution can be truncated normal distribution
or other. In this study, due to the fact that the field data fits
the truncated Gaussian mixture distribution (TGMD) better
and itswidely usewith simplemathematic form, theTGMDis
chosen to demonstrate the development of themixed platoon
dispersion model based on speed-truncated distribution.

By modifying Pacey’s speed normal distribution, the
proposed TGMD is shown in the following equation:
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of Gaussian mixture distribution, which can be estimated by
EM algorithm [23, 24], 𝑀 is the number of mixed compo-
nent, and 𝑐 is a parameter ensuring that the accumulated
probability of 𝑓(V) in range [Vmin, Vmax] equals 100%. As for
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Φ denotes the cumulative function of the standard normal
distribution.

2.2. Platoon Flow Dispersion Model. Assuming the start time
of the green phase of upstream signal 𝑡 = 0 and the stop bar
location 𝑥 = 0, then, the departing flow function when the
upstream intersection signal turns to green is 𝑞(𝑥 = 0, 𝑡).
For signal coordination control, the arriving flow distribution
downstream is used to calculate parameters such as delay,
stop, and queue length based on shock wave theory. There-
fore, it is important to develop amodel to predict the arriving
flow function from the upstreamdeparting flow function.The
following section presents the model development process.

During time differential [𝑇, 𝑇 + 𝑑𝑇], the departing
vehicles from the upstream intersection stop line are 𝑞(𝑥 =
0, 𝑇)𝑑𝑇; following speed-truncated distribution assumption,
the vehicle flow 𝑞(𝑥 = 0, 𝑇 = 𝑡 − 𝑥/V)𝑓(V)𝑑V leaving at time
𝑡 − 𝑥/V from the upstream intersection stop line will arrive
at the downstream intersection 𝑥 (𝑥 > 0) at time 𝑡, which
is 𝑞(𝑥 = 0, 𝑇)𝑓(V) 𝑑V 𝑑𝑇. Therefore, the number of vehicles
arriving at downstream intersection during time differential
[𝑡, 𝑡 + 𝑑𝑡] can be expressed using the following integration
equation:
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Then, after dividing by the time differential in both sides
of (2), the arriving flow rate at downstream intersection
becomes

𝑞 (𝑥, 𝑡) = ∫
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where V
1
and V

2
represent the minimum and maximum

speeds for those vehicles arriving at downstream location 𝑥
at time 𝑡.

Without loss of generality, there are three typical depart-
ing flow patterns in the actual world: stable linear flow,
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decreasing linear flow, and stable combined with decreasing
linear flow as demonstrated in Figure 1.The following section
will develop the arriving flow function at the downstream
intersection based on speed TGMD assumption.

2.2.1. Stable Linear Flow Pattern. Thedeparting flow function
of the stable linear flow pattern at the upstream intersection
stop line 𝑥 = 0 is 𝑞(𝑥 = 0, 𝑇), which can be expressed in the
following equation:
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where 𝑔 is the duration of the green phase and 𝑞 is the
departing saturation flow rate.

Then, the arriving flow function at downstream intersec-
tion location 𝑥 at time 𝑡 can be expressed as the following
piecewise function:
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Let 𝑢 = (V−𝜇)/𝜎 and the dispersion rate 𝛼 = 𝜎/𝜇, because
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𝑑𝑢 is the accumu-
lated probability function of standard normal distribution.
Based on (5), (6), and (7), 𝑞(𝑥, 𝑡) can be calculated using the
following formula:
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Figure 1: Three typical departing flow patterns.

2.2.2. Decreasing Linear Flow Pattern. The departing flow
function of the decreasing linear flow pattern at the upstream
intersection stop line 𝑥 = 0 during the green phase is 𝑞(𝑥 =
0, 𝑇) as expressed in the following equation:
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𝑞 − 𝑎𝑇, 0 < 𝑇 ≤ 𝑔
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(10)

where 𝑎 = 𝑞/𝑔 is the linear decreasing rate.
Following the method for stable linear flow pattern,

the arriving flow function at the downstream intersection
location 𝑥 at time 𝑡 can be expressed as the following
piecewise function:
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Bases on (11), (12), and (7), the flow function 𝑞(𝑥, 𝑡) can
be revised as follows:
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(a) when 𝑥/Vmin ≤ 𝑥/Vmax + 𝑔,

𝑞 (𝑥, 𝑡)
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{
{
{
{
{
{

{

0, 𝑡 >

𝑥

Vmax
∪ 𝑡 <

𝑥

Vmin
+ 𝑔

𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡Vmax/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

(𝑥/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

Vmax

𝑥/𝑡

𝑓 (V)

V
𝑑V,

𝑥

Vmax
≤ 𝑡 <

𝑥

Vmin
𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡𝑥/𝜇𝑗(𝑡−𝑔)−𝑡)/
√2𝛼𝑗𝑡

(𝑥/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

𝑥/(𝑡−𝑔)

𝑥/𝑡

𝑓 (V)

V
𝑑V,

𝑥

Vmin
≤ 𝑡 ≤

𝑥

Vmax
+ 𝑔

𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡𝑥/𝜇𝑗(𝑡−𝑔)−𝑡)/
√2𝛼𝑗𝑡

(𝑡Vmin/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

𝑥/(𝑡−𝑔)

Vmin

𝑓 (V)

V
𝑑V,

𝑥

Vmax
+ 𝑔 < 𝑡 ≤

𝑥

Vmin
+ 𝑔,

(13)

(b) when 𝑥/Vmin > 𝑥/Vmax + 𝑔,

𝑞 (𝑥, 𝑡)

=
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{

0, 𝑡 >

𝑥

Vmax
∪ 𝑡 <

𝑥

Vmin
+ 𝑔

𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡Vmax/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

(𝑥/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

Vmax

𝑥/𝑡

𝑓 (V)

V
𝑑V,

𝑥

Vmax
≤ 𝑡 <

𝑥

Vmax
+ 𝑔

𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡𝑥/𝜇𝑗(𝑡−𝑔)−𝑡)/
√2𝛼𝑗𝑡

(𝑥/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

𝑥/(𝑡−𝑔)

𝑥/𝑡

𝑓 (V)

V
𝑑V,

𝑥

Vmax
+ 𝑔 ≤ 𝑡 ≤

𝑥

Vmin
𝑐 (𝑞 − 𝑎𝑡)

2

𝑀

∑

𝑗=1

𝛼
𝑗[Φ (𝑧)]

(𝑡𝑥/𝜇𝑗(𝑡−𝑔)−𝑡)/
√2𝛼𝑗𝑡

(𝑡Vmin/𝜇𝑗−𝑡)/√2𝛼𝑗𝑡

−𝑎𝑥∫

𝑥/(𝑡−𝑔)

Vmin

𝑓 (V)

V
𝑑V,

𝑥

Vmin
< 𝑡 ≤

𝑥

Vmin
+ 𝑔.

(14)

The first item in (13) and (14) can be calculated using the
accumulated probability function of standard normal distri-
bution; the second item cannot be computed by integration.
Therefore, let 𝑢 = (V − 𝜇)/𝜎, and the natural exponential

function can be expanded applying the Taylor series as shown
in the following:

∫

V2

V1

𝑓 (V)

V
𝑑V

= 𝑐

𝑀

∑

𝑗=1

𝛼
𝑗
∫

(V2−𝜇𝑗)/𝜎𝑗

(V1−𝜇𝑗)/𝜎𝑗

1

√2𝜋 (𝑢𝜎
𝑗
+ 𝜇
𝑗
)

𝑒
−0.5𝑢

2

𝑑𝑢

= 𝑐

𝑀

∑

𝑗=1

𝛼
𝑗
∫

(V2−𝜇𝑗)/𝜎𝑗

(V1−𝜇𝑗)/𝜎𝑗

1

√2𝜋 (𝑢𝜎
𝑗
+ 𝜇
𝑗
)

× (1 −

𝑢
2

2

+

𝑢
4

8

⋅ ⋅ ⋅ + (−1)
𝑛 𝑢
2𝑛

𝑛!2
𝑛
)𝑑𝑢.

(15)

The expanded Taylor series can be computed by inte-
gration. As the Taylor series method is an approximation
method, for application requiring high computation accuracy
the numerical integration method is needed which can be
easily obtained with the help of a modern computer.

2.2.3. Stable Combined with Decreasing Linear Flow Pattern.
The departing flow function of the stable combined with
decreasing linear flow pattern at the upstream intersection
stop line 𝑥 = 0 during the green phase is 𝑞(𝑥 = 0, 𝑇) as
expressed in the following equation:

𝑞

(𝑥 = 0, 𝑇) = {

𝑞, 0 < 𝑇 ≤ 𝑔

𝑞 − 𝑎 (𝑇 − 𝑔) , 𝑔 < 𝑇 ≤ 𝐺,

(16)

where 𝑎 = 𝑞/(𝐺 − 𝑔) is the linear decreasing rate.
Because different classes of flows are addable, the arriving

flow function at downstream intersection for the stable com-
bined with decreasing linear flow pattern can be expressed
by adding the arriving flow of the stable linear flow pattern
with the arriving flow of the decreasing linear flow pattern by
shifting time 𝑔. The details of the calculation formula are not
presented here.

The proposed MPFDM is developed as given in the pre-
vious section. If 𝑥 is set as the downstream signal locations,
the platoon dispersion process between the two signals can
be quantitatively analyzed using themodel.The results can be
used to calculate signal timing parameters such as delay, stop,
and queue length for signal coordination and bus priority
control.

3. Data Acquisition and Analysis

Field data were collected for model development and val-
idation. The surveyed road is a typical four-lane two-way
urban arterial, Wushan Road, which normally operates at
undersaturation traffic condition. Along this road, there
are 14 bus lines, and the posted speed limit is 50 km/h
(13.89m/s). License plates were recorded by video cameras at
two locations (650m distance): one is right after the signals
at Yuehan Road and the other is located right before the
diverging points. Travel times were directly computed from
video records, and the original speeds (journey speeds for
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Table 1: Origin platoon journey speed data.

Period 1 (7:45–8:25 am) Period 2 (8:25–10:00 am) Period 3 (10:00–10:40 am)
Car Bus Mixed Car Bus Mixed Car Bus Mixed

Length (m) 650 650 650

Flow rate (veh/h) 1007 881 648

Bus traffic (%) 13.1 10.8 11.8

Sample size 617 88 705 1244 151 1395 410 51 461

Minimum speed (m/s) 8.67 5.65 5.65 7.74 5.37 5.37 7.22 6.13 6.13

Maximum speed (m/s) 20.97 14.44 20.97 21.67 12.50 21.67 20.96 13.27 20.96

Average speed (m/s) 13.52 7.80 12.85 13.62 8.14 13.23 13.97 8.10 13.31

Standard deviation 1.99 1.79 2.64 1.90 1.34 2.56 1.85 1.61 2.44

Table 2: Estimated parameter values of Gaussian mixture distribution based on EM algorithm.

1st component 2nd component Iteration times
𝛼
1

𝜇
1

𝜎
1

𝛼
2

𝜇
2

𝜎
2

Period 1 0.8290 13.6642 3.2344 0.1710 8.9297 4.0870 3

Period 2 0.9065 13.5757 4.1019 0.0935 7.6659 0.8087 22

Period 3 0.9004 13.9452 3.6320 0.0996 7.5916 0.4910 7

buses, running speed for cars) were derived from travel
time and distance. The data was collected from 7 : 45 AM
to 10 : 40 AM. Three time periods were apparently identified
based on different traffic volume levels. A statistics summary
of the original car and mixed platoon speed data for all time
periods is presented in Table 1.

As shown in Table 1, the average speeds of the car platoon
are slightly higher than those of mixed platoon for all time
periods; the standard deviations of car platoon are lower than
those of mixed platoon; the minimum speeds of car platoon
are greater than those ofmixed platoon; themaximum speeds
of car platoon are the same as those of mixed platoon.
All these are reasonable because buses have lower speed
compared to cars presented in the mixed platoon.

The plots of the speed histogram and the fitted Gaussian
mixture distribution curves are shown in Figure 2. From the
plots, two humps were obviously identified from the speed
data histogram of themixed platoon, which represent car and
bus groups, respectively. This confirmed the results of Cheng
[21] and Chen et al. [22]. For this reason, some researchers
[25, 26] have proposed to use compound distributions that
use an appropriate combination of more than one distribu-
tion as a modeling tool, since the fitting of corresponding
distributions is usually regarded as the “dissection” of a
heterogeneous population into more homogeneous “parts.”
Due to the fact that Gaussian mixture distribution can
approximate any continuous distribution and its widely use
with simple mathematic form composed of several weighted
normal distributions, Gaussian mixture distribution is used
in this paper. Let the number of mixed component 𝑀 =

2, based on MATLAB software, and parameters for all
time periods were obtained using EM algorithm as listed
in Table 2. Because EM algorithm is widely known, its details
are not presented here in order to keep conciseness.

Furthermore, performances of different distributions
(including normal, lognormal, Weibull, and gamma) fitting
for the mixed platoon speed data present K-S evaluation 𝑃
values < 0.01 with 0.05 of significance level due to different
speed distribution characteristics of cars and buses in the
mixed platoon. Nevertheless, Gaussian mixture distribution
is the one with K-S evaluation 𝑃 values > 0.15 for all time
periods. Because the speed of Gaussian mixture distribution
spreads within a limited value range between minimum
speed and maximum speed, we can accept the assumption
that speed follows truncated Gaussian mixture distribution,
which is composed of several components of truncated
normal distribution with the same range limit [25, 26].

What isworthmentioning is that𝑀 is usually determined
using the histogram observation method, whose detailed
steps are to draw the envelope of sample data histogram and
observe the number of curve peaks 𝐹, generally required 𝐹 ≤
𝑀 < 2𝐹.

4. Platoon Flow Dispersion Analysis

Because the MPFDM demonstrated here assumes the speed
following TGMD, the parameters used in the model need to
be transferred from the Gaussian mixture distribution. The
TGMD statistics of the vehicle speed data and the parameters
estimated by EM algorithm of period 1 are summarized in
Table 3, which is used in this section to demonstrate the
application of MPFDM in signal coordination analysis.

4.1. Departing Flow Function at Upstream Intersection. To
compare the performance of the proposed model with the
Robertson model, virtual departing flow distributions for
mixed platoon from upstream intersection are assumed for
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Figure 2: Speed distribution histogram and fitted Gaussian mixture distribution curve of the study segment.

1.2

1

0.8

0.6

0.4

0.2

0

q
(x
,t
) (

ve
h/

s)

Mixed flow

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
t (s)

Figure 3: Departing flow distribution at upstream intersection.

numeric analysis and are shown in Figure 3. The mixed flow
is the sum of car and bus flows.

4.2. Arriving Flow Distribution at Downstream Intersection.
The virtual downstream intersections are assumed at 𝑥

𝑑
=

100, 400, 700 (m). The arriving flow distribution function
𝑞 (𝑥 = 𝑥

𝑑
, 𝑡) is analyzed for mixed platoon. Because
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Figure 4: Comparison of arriving flow distribution between the
proposed model and the Robertson model.

the Robertson model is widely known, its details are not
presented here.

The arriving flow distribution at downstream locations at
𝑥
𝑑
= 100, 400, 700 (m) for mixed platoon using different

modeling methods is presented in Figure 4.
Based onFigure 4, the following can be concluded regard-

ing the model performance.
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Table 3: Statistics of TGMD of Time Period 1.

Symbol Mixed platoon

TGMD coefficient 𝑐 1.055
Minimum speed (m/s) ]min 5.65
Maximum speed (m/s) ]max 20.97

Parameters of Gaussian
mixture distribution

𝛼
1

0.8290
𝛼
2

0.1710
𝜇
1

13.6642
𝜇
2

8.9297
𝜎
1

3.2344
𝜎
2

4.0870

(a) According to MPFDM, during time period ∀𝑡 ∉

[𝑥
𝑑
/Vmax, 𝑥𝑑/Vmin + 𝑔], the flow rate 𝑞(𝑥

𝑑
, 𝑡) =

0; when 𝑥/Vmin ≤ 𝑥/Vmax + 𝑔, during time
period ∀𝑡 ∈ [𝑥

𝑑
/Vmax, 𝑥𝑑/Vmin + 𝑔], the flow

rate 𝑞(𝑥
𝑑
, 𝑡) increases as 𝑡 increases; during time

period ∀𝑡 ∈ [𝑥
𝑑
/Vmin, 𝑥𝑑/Vmin + 𝑔], the flow rate

𝑞(𝑥
𝑑
, 𝑡) starts to decrease; when 𝑥/Vmin > 𝑥/Vmax +

𝑔, during time period ∀𝑡 ∈ [𝑥
𝑑
/Vmax, 𝑥𝑑/Vmin], the

flow rate 𝑞(𝑥
𝑑
, 𝑡) increases as 𝑡 increases; during

time period ∀𝑡 ∈ [𝑥
𝑑
/Vmin, 𝑥𝑑/Vmin + 𝑔], the flow

rate 𝑞(𝑥
𝑑
, 𝑡) starts to decrease. Furthermore, as 𝑥

𝑑

increases, the peak flow rate decreases, and it will take
longer time 𝑥

𝑑
/Vmin + 𝑔 − 𝑥𝑑/Vmax for all vehicles to

pass the downstream intersection.This is as observed
in the actual world. However, the Robertson model
lacks the capability of modeling this phenomenon.

(b) Compared to the Robertson model, vehicles at the
front of the platoon reach the downstream intersec-
tion earlier and those at the rear of platoon spread in a
shorter range for MPFDM. As the distance increases,
the difference increases. This is because the platoon
speed of MPFDM follows TGMD, which spreads in a
narrower range in [Vmin, Vmax].

(c) Compared to the Robertson model, the peak of
flow is lower and appears as a smooth hump for
MPFDM, and the hump becomes flatter as the dis-
tance increases.This is due to faster vehicles presented
in the Robertson model and the fact that the volume
conservation rule cannot be violated.

(d) Compared to theRobertsonmodel,MPFDMpresents
the exact time the first vehicle and the last vehicle
reaches the downstream intersection, which also
reflects the fact in the field. However, vehicles trav-
elling at a very small or even zero speed exist in the
Robertson model.

5. Conclusion

Large percentage of bus flow in mixed flow affects the
accuracy of platoon dispersion modeling in Pacey’s model or
the Robertson model, which does not discriminate between
bus traffic and car traffic.Through speed TGMD assumption,
the mixed flow can be modeled by combining bus platoon

with car platoon. Mixed platoon speed distribution will be
influenced by the interaction between cars andbuses, which is
affected by flow rate, roadway function class, and percentage
of buses. However, the interaction will eventually manifest
a complicated speed distribution which cannot deal with
simple distribution [27].

This strategy used here for mixed platoon modeling can
be applied for all kinds of vehicle-type combination. For bus-
car mixed traffic, only this mixed platoon dispersion model
is needed; for multiple vehicle types, because platoon speed
distribution can be fitted by adjusting the number of mixed
components, the arriving mixed flow at the downstream
intersection can be obtained. Therefore, the model has wide
application value.

Vehicles with infinite speeds exist in both Pacey’s model
and Robertson model, which violate the speed distribution
limits (minimum and maximum speeds) in the actual world.
The proposed truncated distribution assumption fixes the
defect of those models.
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