189 research outputs found

    Transient microscopic testing method based on deflectometry

    Get PDF
    The deflectometry provides an optical testing method with ultra-high dynamic range. In this paper, a microscopic testing method based on deflectometric technique is proposed to quantitatively evaluate the microstructures according to the wavefront aberration. To achieve the real-time and accurate wavefront testing for microstructure evaluation, a color-coded phase-shifting fringe pattern is applied to illuminate the test object. It avoids the sequential projection of multistep phase-shifting fringes in traditional deflectometry, enabling the transient wavefront testing. The feasibility of the proposed transient microscopic testing method is demonstrated by the experiment. The proposed method enables accurate and transient testing of microstructures with high dynamic range, minimizing the environmental disturbance.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Acoustic Cues to Perceived Prominence Levels:Evidence from German Spontaneous Speech

    Get PDF
    The iambic-trochaic law (ITL) states that a louder sound signals the beginning of a group, while a longer sound signals its end. Although the ITL has been empirically supported in experiments with a variety of stimuli, it is not clear whether it is due to universal cognitive mechanisms or the outcome of language-specific prosodic properties. We tested the law with speakers of English, Greek and Korean who heard sequences of tones varied in duration and/or intensity. The results revealed neither significant differences among languages nor a strong bias shared by speakers of all languages. Significantly, listeners� grouping preferences were influenced by the duration of the inter-stimulus interval (ISI), with longer ISI resulting in stronger trochaic preferences, indicating that specific experimental conditions may be responsible for differences in listener responses across experiments testing the ITL

    A sample-position-autocorrection system with precision better than 1 \um~in angle-resolved photoemission experiments

    Full text link
    We present the development of a high-precision sample-position-autocorrection system for photoemission experiments. A binocular vision method based on image pattern matching calculations was realized to track the sample position with an accuracy better than 1 \um, which was much smaller than the spot size of the incident laser. We illustrate the performance of the sample-position-autocorrection system with representative photoemission data on the topological insulator Bi2_2Se3_3 and an optimally-doped cuprate superconductor \Bi. Our method provides new possibilities for studying the temperature-dependent electronic structures in quantum materials by laser-based or spatially resolved photoemission systems with high precision and efficiency.Comment: 6 pages, 4 figure

    Distributed Graph Neural Network Training: A Survey

    Full text link
    Graph neural networks (GNNs) are a type of deep learning models that are trained on graphs and have been successfully applied in various domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques for the distributed execution of GNN training. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol. We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on distributed GNN training

    Ultrafast Switching from the Charge Density Wave Phase to a Metastable Metallic State in 1T-TiSe2_2

    Full text link
    The ultrafast electronic structures of the charge density wave material 1T-TiSe2_2 were investigated by high-resolution time- and angle-resolved photoemission spectroscopy. We found that the quasiparticle populations drove ultrafast electronic phase transitions in 1T-TiSe2_2 within 100 fs after photoexcitation, and a metastable metallic state, which was significantly different from the equilibrium normal phase, was evidenced far below the charge density wave transition temperature. Detailed time- and pump-fluence-dependent experiments revealed that the photoinduced metastable metallic state was a result of the halted motion of the atoms through the coherent electron-phonon coupling process, and the lifetime of this state was prolonged to picoseconds with the highest pump fluence used in this study. Ultrafast electronic dynamics were well captured by the time-dependent Ginzburg-Landau model. Our work demonstrates a mechanism for realizing novel electronic states by photoinducing coherent motion of atoms in the lattice.Comment: 13 Pages, 10 figure

    Methodologies for Improving HDR Efficiency

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating technology that can be programmed to induce double-strand break (DSB) in the genome wherever needed. After nuclease cleavage, DSBs can be repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) pathway. For producing targeted gene knock-in or other specific mutations, DSBs should be repaired by the HDR pathway. While NHEJ can cause various length insertions/deletion mutations (indels), which can lead the targeted gene to lose its function by shifting the open reading frame (ORF). Furthermore, HDR has low efficiency compared with the NHEJ pathway. In order to modify the gene precisely, numerous methods arose by inhibiting NHEJ or enhancing HDR, such as chemical modulation, synchronized expression, and overlapping homology arm. Here we focus on the efficiency and other considerations of these methodologies

    Observation of plateau regions for zero bias peaks within 5% of the quantized conductance value 2e2/h2e^2/h

    Full text link
    Probing an isolated Majorana zero mode is predicted to reveal a tunneling conductance quantized at 2e2/h2e^2/h at zero temperature. Experimentally, a zero-bias peak (ZBP) is expected and its height should remain robust against relevant parameter tuning, forming a quantized plateau. Here, we report the observation of large ZBPs in a thin InAs-Al hybrid nanowire device. The ZBP height can stick close to 2e2/h2e^2/h, mostly within 5% tolerance, by sweeping gate voltages and magnetic field. We further map out the phase diagram and identify two plateau regions in the phase space. Our result constitutes a step forward towards establishing Majorana zero modes.Comment: Raw data and processing codes within this paper are available at https://doi.org/10.5281/zenodo.654697
    corecore