191 research outputs found

    Movement Kinematics Dynamically Modulates the Rolandic ~ 20-Hz Rhythm During Goal-Directed Executed and Observed Hand Actions

    Get PDF
    First Online: 14 February 2018This study investigates whether movement kinematics modulates similarly the rolandic α and β rhythm amplitude during executed and observed goal-directed hand movements. It also assesses if this modulation relates to the corticokinematic coherence (CKC), which is the coupling observed between cortical activity and movement kinematics during such motor actions. Magnetoencephalography (MEG) signals were recorded from 11 right-handed healthy subjects while they performed or observed an actor performing the same repetitive hand pinching action. Subjects’ and actor’s forefinger movements were monitored with an accelerometer. Coherence was computed between acceleration signals and the amplitude of α (8–12 Hz) or β (15–25 Hz) oscillations. The coherence was also evaluated between source-projected MEG signals and their β amplitude. Coherence was mainly observed between acceleration and the amplitude of β oscillations at movement frequency within bilateral primary sensorimotor (SM1) cortex with no difference between executed and observed movements. Cross-correlation between the amplitude of β oscillations at the SM1 cortex and movement acceleration was maximal when acceleration was delayed by ~ 100 ms, both during movement execution and observation. Coherence between source-projected MEG signals and their β amplitude during movement observation and execution was not significantly different from that during rest. This study shows that observing others’ actions engages in the viewer’s brain similar dynamic modulations of SM1 cortex β rhythm as during action execution. Results support the view that different neural mechanisms might account for this modulation and CKC. These two kinematic-related phenomena might help humans to understand how observed motor actions are actually performed.Xavier De Tiège is Postdoctorate Clinical Master Specialist at the Fonds de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium). This work was supported by the program Attract of Innoviris (Grant 2015-BB2B-10 to Mathieu Bourguignon), the Spanish Ministry of Economy and Competitiveness (Grant PSI2016-77175-P to Mathieu Bourguignon), the Marie Skłodowska-Curie Action of the European Commission (grant #743562 to Mathieu Bourguignon), a “Brains Back to Brussels” grant to Veikko Jousmäki from the Institut d’Encouragement de la Recherche Scientifique et de l’Innovation de Bruxelles (Brussels, Belgium), European Research Council (Advanced Grant #232946 to Riitta Hari), the Fonds de la Recherche Scientifique (FRS-FNRS, Belgium, Research Credits: J009713), and the Academy of Finland (grants #131483 and #263800). The MEG project at the ULB-Hôpital Erasme (Brussels, Belgium) is financially supported by the Fonds Erasme

    Changes in electrophysiological static and dynamic human brain functional architecture from childhood to late adulthood

    Get PDF
    Published: 04 November 2020This magnetoencephalography study aimed at characterizing age-related changes in resting-state functional brain organization from mid-childhood to late adulthood. We investigated neuromagnetic brain activity at rest in 105 participants divided into three age groups: children (6–9 years), young adults (18–34 years) and healthy elders (53–78 years). The effects of age on static resting-state functional brain integration were assessed using band-limited power envelope correlation, whereas those on transient functional brain dynamics were disclosed using hidden Markov modeling of power envelope activity. Brain development from childhood to adulthood came with (1) a strengthening of functional integration within and between resting-state networks and (2) an increased temporal stability of transient (100–300 ms lifetime) and recurrent states of network activation or deactivation mainly encompassing lateral or medial associative neocortical areas. Healthy aging was characterized by decreased static resting-state functional integration and dynamic stability within the primary visual network. These results based on electrophysiological measurements free of neurovascular biases suggest that functional brain integration mainly evolves during brain development, with limited changes in healthy aging. These novel electrophysiological insights into human brain functional architecture across the lifespan pave the way for future clinical studies investigating how brain disorders affect brain development or healthy aging.This study was supported by the Action de Recherche Concertée Consolidation (ARCC, “Characterizing the spatio-temporal dynamics and the electrophysiological bases of resting state networks”, ULB, Brussels, Belgium), the Fonds Erasme (Research Convention “Les Voies du Savoir”,Brussels, Belgium) and the Fonds de la Recherche Scientifique (Research Convention: T.0109.13, FRS-FNRS, Brussels, Belgium). Nicolas Coquelet has been supported by the ARCC, by the Fonds Erasme (Research Convention “Les Voies du Savoir”, Brussels, Belgium) and is supported by the FRS-FNRS (Research Convention: Excellence of Science EOS “MEMODYN”). Alison Mary is Postdoctoral Researcher at the FRS-FNRS. Maxime Niesen and Marc Vander Ghinst have been supported by the Fonds Erasme. Mariagrazia Ranzini is supported by the Marie Sklodowska-Curie European Union’s Horizon 2020 research and innovation program (Research Grant: 839394). Mathieu Bourguignon is supported by the program Attract of Innoviris (Research Grant 2015-BB2B-10, Brussels, Belgium), the Marie Sklodowska-Curie Action of the European Commission (Research Grant: 743562) and by the Spanish Ministery of Economy and Competitiveness (Research Grant: PSI2016-77175-P). Xavier De Tiège is Postdoctorate Clinical Master Specialist at the FRS-FNRS. The MEG project at the CUB Hôpital Erasme is financially supported by the Fonds Erasme

    Glueball operators and the microscopic approach to N=1 gauge theories

    Full text link
    We explain how to generalize Nekrasov's microscopic approach to N=2 gauge theories to the N=1 case, focusing on the typical example of the U(N) theory with one adjoint chiral multiplet X and an arbitrary polynomial tree-level superpotential Tr W(X). We provide a detailed analysis of the generalized glueball operators and a non-perturbative discussion of the Dijkgraaf-Vafa matrix model and of the generalized Konishi anomaly equations. We compute in particular the non-trivial quantum corrections to the Virasoro operators and algebra that generate these equations. We have performed explicit calculations up to two instantons, that involve the next-to-leading order corrections in Nekrasov's Omega-background.Comment: 38 pages, 1 figure and 1 appendix included; v2: typos and the list of references corrected, version to appear in JHE

    Physical and mental health comorbidity is common in people with multiple sclerosis: nationally representative cross-sectional population database analysis

    Get PDF
    <b>Background</b> Comorbidity in Multiple Sclerosis (MS) is associated with worse health and higher mortality. This study aims to describe clinician recorded comorbidities in people with MS. <p></p> <b>Methods</b> 39 comorbidities in 3826 people with MS aged ≥25 years were compared against 1,268,859 controls. Results were analysed by age, gender, and socioeconomic status, with unadjusted and adjusted Odds Ratios (ORs) calculated using logistic regression. <p></p> <b>Results</b> People with MS were more likely to have one (OR 2.44; 95% CI 2.26-2.64), two (OR 1.49; 95% CI 1.38-1.62), three (OR 1.86; 95% CI 1.69-2.04), four or more (OR 1.61; 95% CI 1.47-1.77) non-MS chronic conditions than controls, and greater mental health comorbidity (OR 2.94; 95% CI 2.75-3.14), which increased as the number of physical comorbidities rose. Cardiovascular conditions, including atrial fibrillation (OR 0.49; 95% CI 0.36-0.67), chronic kidney disease (OR 0.51; 95% CI 0.40-0.65), heart failure (OR 0.62; 95% CI 0.45-0.85), coronary heart disease (OR 0.64; 95% CI 0.52-0.71), and hypertension (OR 0.65; 95% CI 0.59-0.72) were significantly less common in people with MS. <p></p> <b>Conclusion</b> People with MS have excess multiple chronic conditions, with associated increased mental health comorbidity. The low recorded cardiovascular comorbidity warrants further investigation

    Lung MRI and impairment of diaphragmatic function in Pompe disease

    Get PDF
    Background: Pompe disease is a progressive metabolic myopathy. Involvement of respiratory muscles leads to progressive pulmonary dysfunction, particularly in supine position. Diaphragmatic weakness is considered to be the most important component. Standard spirometry is to some extent indicative but provides too little insight into diaphragmatic dynamics. We used lung MRI to study diaphragmatic and chest-wall movements in Pompe disease. Methods: In ten adult Pompe patients and six volunteers, we acquired two static spirometer-controlled MRI scans during maximum inspiration and expiration. Images were manually segmented. After normalization for lung size, changes in lung dimensions between inspiration and expiration were used for analysis; normalization was based on the cranial-caudal length ratio (representing vertical diaphragmatic displacement), and the anterior-posterior and left-right length ratios (representing chest-wall movements due to thoracic muscles). Results: We observed striking dysfunction of the diaphragm in Pompe patients; in some patients the diaphragm did not show any displacement. Patients had smaller cranial-caudal length ratios than volunteers (p < 0.001), indicating diaphragmatic weakness. This variable strongly correlated with forced vital capacity in supine position (r = 0.88) and postural drop (r = 0.89). While anterior-posterior length ratios also differed between patients and volunteers (p = 0.04), left-right length ratios did not (p = 0.1). Conclusions: MRI is an innovative tool to visualize diaphragmatic dynamics in Pompe patients and to study chest-walland diaphragmatic movements in more detail. Our data indicate that diaphragmatic displacement may be severely disturbed in patients with Pompe disease

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    Дискретно-континуальные системы: подходы, модели, программно-модельные комплексы

    Get PDF
    <div><p>Background</p><p>Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness.</p><p>Methods</p><p>The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle.</p><p>Results</p><p>Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls.</p><p>Conclusion</p><p>Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response.</p></div

    Increased aortic stiffness and blood pressure in non-classic Pompe disease

    Get PDF
    Vascular abnormalities and glycogen accumulation in vascular smooth muscle fibres have been described in Pompe disease. Using carotid-femoral pulse wave velocity (cfPWV), the gold standard methodology for determining aortic stiffness, we studied whether aortic stiffness is increased in patients with Pompe disease. Eighty-four adult Pompe patients and 179 age- and gender-matched volunteers participated in this cross-sectional case-controlled study. Intima media thickness and the distensibility of the right common carotid artery were measured using a Duplex scanner. Aortic augmentation index, central pulse pressure, aortic reflexion time and cfPWV were assessed using the SphygmoCor® system. CfPWV was higher in patients than in volunteers (8.8 versus 7.4 m/s, p < 0.001). This difference was still present after adjustment for age, gender, mean arterial blood pressure (MAP), heart rate and diabetes mellitus (p = 0.001), and was shown by subgroup analysis to apply to the 40-59 years age group (p = 0.004) and 60+ years age group (p = 0.01), but not to younger age groups (p = 0.99)

    A coupled agent-based model to analyse human-drought feedbacks for agropastoralists in dryland regions

    Get PDF
    Drought is a persistent hazard that impacts the environment, people's livelihoods, access to education and food security. Adaptation choices made by people can influence the propagation of this drought hazard. However, few drought models incorporate adaptive behavior and feedbacks between adaptations and drought. In this research, we present a dynamic drought adaptation modeling framework, ADOPT-AP, which combines socio-hydrological and agent-based modeling approaches. This approach is applied to agropastoral communities in dryland regions in Kenya. We couple the spatially explicit hydrological Dryland Water Partitioning (DRYP) model with a behavioral model capable of simulating different bounded rational behavioral theories (ADOPT). The results demonstrate that agropastoralists respond differently to drought due to differences in (perceptions of) their hydrological environment. Downstream communities are impacted more heavily and implement more short-term adaptation measures than upstream communities in the same catchment. Additional drivers of drought adaptation concern socio-economic factors such as wealth and distance to wells. We show that the uptake of drought adaptation influences soil moisture (positively through irrigation) and groundwater (negatively through abstraction) and, thus, the drought propagation through the hydrological cycle

    Measuring the cortical tracking of speech with optically-pumped magnetometers

    Get PDF
    During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g. language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.info:eu-repo/semantics/publishe
    corecore