19 research outputs found

    Ecological value of coastal habitats for commercially and ecologically important species

    Get PDF
    Many exploited fish and macroinvertebrates that utilize the coastal zone have declined, and the causes of these declines, apart from overfishing, remain largely unresolved. Degradation of essential habitats has resulted in habitats that are no longer adequate to fulfil nursery, feeding, or reproductive functions, yet the degree to which coastal habitats are important for exploited species has not been quantified. Thus, we reviewed and synthesized literature on the ecological value of coastal habitats (i.e. seagrass beds, shallow subtidal and intertidal habitats, kelp beds, shallow open water habitats, saltmarshes, mussel beds, macroalgal beds, rocky bottom, and mariculture beds) as feeding grounds, nursery areas, spawning areas, and migration routes of 59 taxa, for which the International Council for the Exploration of the Sea (ICES) gives management advice, and another 12 commercially or ecologically important species. In addition, we provide detailed information on coastal habitat use for plaice (Pleuronectes platessa), cod (Gadus morhua), brown shrimp (Crangon crangon), and European lobster (Homarus gammarus). Collectively, 44 of all ICES species utilized coastal habitats, and these stocks contributed 77 of the commercial landings of ICES-advice species, indicating that coastal habitats are critical to population persistence and fishery yield of ICES species. These findings will aid in defining key habitats for protection and restoration and provide baseline information needed to define knowledge gaps for quantifying the habitat value for exploited fish and invertebrates

    Modelling population effects of juvenile offshore fish displacement towards adult habitat

    Get PDF
    Recent studies of fish distribution patterns highlight shifts in the spatial distributions of particular life-stages. Focus has thus far been on changes in habitat use and possible drivers for these changes. Yet, small-scale shifts in habitat use of certain life stages may have profound consequences on population dynamics through changes in resource use and competition. To explore this, a conceptual stage-structured model was developed with 3 stages and 2 resources and allowing a move of large juveniles from the shallow to the deep habitat. Large juveniles compete with small juveniles in shallow waters and with adults in deeper waters. Alternative stable states occur, with one state dominated by small juvenile biomass and the other dominated by adult biomass.The model results show for both states that while large juvenile biomass responds to a change in time spent in the deep habitat, the biomass of small juveniles and adults is barely affected. Between the 2 states there is a profoundly different population response to increased fishing mortality. In the adult biomass dominated state, adult biomass is hardly affected while juvenilebiomass increases until population collapse, with increased fishing. In the small juvenile dominated state, adult and small juvenile biomass decrease, and large juvenile biomass increases. This state persists at much higher fishing mortality than the adult biomass dominated state. This study highlights that safeguarding nursery functions in a changing environment requires monitoring of juvenile life-stages in a range of habitats and a spatially adaptive management strateg

    Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters

    Get PDF
    General concepts of larval fish ecology in temperate oceans predominantly associate dispersal and survival to exogenous mechanisms such as passive drift along ocean currents. However, for tropical reef fish larvae and species in inland freshwater systems behavioural aspects of habitat selection are evidently important components of dispersal. This study is focused on larval Atlantic herring (Clupea harengus) distribution in a Baltic Sea retention area, free of lunar tides and directed current regimes, considered as a natural mesocosm. A Lorenz curve originally applied in socio-economics to describe demographic income distribution was adapted to a 20 year time-series of weekly larval herring distribution, revealing size-dependent spatial homogeneity. Additional quantitative sampling of distinct larval development stages across pelagic and littoral areas uncovered a loop in habitat use during larval ontogeny, revealing a key role of shallow littoral waters. With increasing rates of coastal change, our findings emphasize the importance of the littoral zone when considering reproduction of pelagic, ocean-going fish species; highlighting a need for more sensitive management of regional coastal zones
    corecore