25 research outputs found

    Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale

    Get PDF
    The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 Όm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC. © 2021 The Authors. Published by American Chemical Society

    Comparative assessment of clinical rating scales in Wilson’s disease

    Get PDF
    Background: Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism resulting in multifaceted neurological, hepatic, and psychiatric symptoms. The objective of the study was to comparatively assess two clinical rating scales for WD, the Unified Wilson’s Disease Rating Scale (UWDRS) and the Global Assessment Scale for Wilson’s disease (GAS for WD), and to test the feasibility of the patient reported part of the UWDRS neurological subscale (termed the “minimal UWDRS”). Methods: In this prospective, monocentric, cross-sectional study, 65 patients (median age 35 [range: 15–62] years; 33 female, 32 male) with treated WD were scored according to the two rating scales. Results: The UWDRS neurological subscore correlated with the GAS for WD Tier 2 score (r = 0.80; p < 0.001). Correlations of the UWDRS hepatic subscore and the GAS for WD Tier 1 score with both the Model for End Stage Liver Disease (MELD) score (r = 0.44/r = 0.28; p < 0.001/p = 0.027) and the Child-Pugh score (r = 0.32/r = 0.12; p = 0.015/p = 0.376) were weak. The “minimal UWDRS” score significantly correlated with the UWDRS total score (r = 0.86), the UWDRS neurological subscore (r = 0.89), and the GAS for WD Tier 2 score (r = 0.86). Conclusions: The UWDRS neurological and psychiatric subscales and the GAS for WD Tier 2 score are valuable tools for the clinical assessment of WD patients. The “minimal UWDRS” is a practical prescreening tool outside scientific trials

    Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL)

    No full text
    A directly modulated 1.55-m buriedheterostructure passive feedback laser exhibits a high modulation bandwidth of up to 34 GHz at moderate distributed-feedback (DFB) section currents between 20 and 60 mA. A very flat frequency response and a low alpha parameter have been demonstrated in the small signal modulation analysis. The device has open eyes at data rates of 25 and 40 Gb/s with reduced frequency chirp

    Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale

    No full text
    The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 ÎŒm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.publishe

    First Evidence of Octacalcium Phosphate@Osteocalcin Nanocomplex as Skeletal Bone Component Directing Collagen Triple–Helix Nanofibril Mineralization

    No full text
    Tibia trabeculae and vertebrae of rats as well as human femur were investigated by high-resolution TEM at the atomic scale in order to reveal snapshots of the morphogenetic processes of local bone ultrastructure formation. By taking into account reflections of hydroxyapatite for Fourier filtering the appearance of individual alpha–chains within the triple–helix clearly shows that bone bears the feature of an intergrowth composite structure extending from the atomic to the nanoscale, thus representing a molecular composite of collagen and apatite. Careful Fourier analysis reveals that the non–collagenous protein osteocalcin is present directly combined with octacalcium phosphate. Besides single spherical specimen of about 2 nm in diameter, osteocalcin is spread between and over collagen fibrils and is often observed as pearl necklace strings. In high-resolution TEM, the three binding sites of the γ-carboxylated glutamic acid groups of the mineralized osteocalcin were successfully imaged, which provide the chemical binding to octacalcium phosphate. Osteocalcin is attached to the collagen structure and interacts with the Ca–sites on the (100) dominated hydroxyapatite platelets with Ca-Ca distances of about 9.5 Å. Thus, osteocalcin takes on the functions of Ca–ion transport and suppression of hydroxyapatite expansion

    Systematic Study on the Cytotoxic Potency of Commonly Used Dimeric Metal Precursors in Human Cancer Cell Lines

    No full text
    Abstract The cytotoxicities of seven dimeric metal species of the general formula [M(arene)Cl2]2, commonly used as precursors for complex synthesis and deemed biologically inactive, are investigated in seven commonly employed human cancer cell lines. Four of these complexes featured a ruthenium(II) core, where p‐cymene, toluene, benzene and indane were used as arenes. Furthermore, the osmium(II) p‐cymene dimer, as well as the Cp* dimers of rhodium(III) and its heavier analogue iridium(III) were included in this work (Cp*=1,2,3,4,5‐pentamethylcyclopentadienide). While the cytotoxic potencies of the ruthenium(II) and osmium(II) dimers are very low (or not even detectable at applicable concentrations), surprising activity, especially in cells from ovarian malignancies (with one or two‐digit micromolar IC50 values), have been found for the rhodium(III) and iridium(III) representatives. This publication is aimed at all researchers using synthetic procedures based on functionalization of these dimeric starting materials to rationalize changes in biological properties, especially cytotoxicity in cancer cells

    Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies

    No full text
    The main purpose of this study was to synthesize a new set of naphthoquinone-based ruthenium(II) arene complexes and to develop an understanding of their mode of action. This study systematically reviews the steps of synthesis, aiming to provide a simplified approach using microwave irradiation. The chemical structures and the physicochemical properties of this novel group of compounds were examined by 1H-NMR and 13C-NMR spectroscopy, X-ray diffractometry, HPLC-MS and supporting DFT calculations. Several aspects of the biological activity were investigated in vitro, including short- and long-term cytotoxicity tests, cellular accumulation studies, detection of reactive oxygen species generation, apoptosis induction and NAD(P)H:quinone oxidoreductase 1 (NQO1) activity as well as cell cycle analysis in A549, CH1/PA-1, and SW480 cancer cells. Furthermore, the DNA interaction ability was studied in a cell-free assay. A positive correlation was found between cytotoxicity, lipophilicity and cellular accumulation of the tested complexes, and the results offer some important insights into the effects of the arene. The most obvious finding to emerge from this study is that the usually very chemosensitive CH1/PA-1 teratocarcinoma cells showed resistance to these phthiocol-based organometallics in comparison to the usually less chemosensitive SW480 colon carcinoma cells, which pilot experiments suggest as being related to NQO1 activity

    The First Case(s) of Botulism in Vienna in 21 Years: A Case Report

    Get PDF
    We describe two linked cases of botulinum toxin intoxication to provide the clinician with a better idea about how botulism cases may present since early diagnosis and treatment are crucial in botulism. Botulinum toxin is the strongest neurotoxin known. Methods: We review the available literature, the compiled clinical data, and observations. Results: After a slow onset of clinical signs a married couple living in Vienna presented with dysphagia, difficulties in accommodation, inability to sweat, urinary and stool retention, dizziness, and nausea. They suffered intoxication with botulinum toxin type B. Botulism is a rarely occurring disease in Austria. In the last 21 years there were only twelve reported cases. Conclusion: Both patients went to a general practitioner as well as several specialists before they were sent to and correctly diagnosed at our outpatient department. To avoid long delays between intoxication and diagnosis we think it is crucial to advert to the complex symptoms a nonsevere intoxication with botulinum toxin can produce, especially since intoxications have become rare occurrences in the industrialized societies due to the high quality of industrial food production

    Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Get PDF
    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via ”CT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the ”CT despite the increased total area as evaluated in both ”CT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies

    Cardiopulmonary Long-Term Sequelae in Patients after Severe COVID-19 Disease

    No full text
    We aimed to identify cardiopulmonary long-term effects after severe COVID-19 disease as well as predictors of Long-COVID in a prospective registry. A total of 150 consecutive, hospitalized patients (February 2020 and April 2021) were included six months post hospital discharge for a clinical follow-up. Among them, 49% experienced fatigue, 38% exertional dyspnea and 75% fulfilled criteria for Long-COVID. Echocardiography detected reduced global longitudinal strain (GLS) in 11% and diastolic dysfunction in 4%. Magnetic resonance imaging revealed traces of pericardial effusion in 18% and signs of former pericarditis or myocarditis in 4%. Pulmonary function was impaired in 11%. Chest computed tomography identified post-infectious residues in 22%. Whereas fatigue did not correlate with cardiopulmonary abnormalities, exertional dyspnea was associated with impaired pulmonary function (OR 3.6 [95% CI: 1.2–11], p = 0.026), reduced GLS (OR 5.2 [95% CI: 1.6–16.7], p = 0.003) and/or left ventricular diastolic dysfunction (OR 4.2 [95% CI: 1.03–17], p = 0.04). Predictors of Long-COVID included length of in-hospital stay (OR: 1.15 [95% CI: 1.05–1.26], p = 0.004), admission to intensive care unit (OR cannot be computed, p = 0.001) and higher NT-proBNP (OR: 1.5 [95% CI: 1.05–2.14], p = 0.026). Even 6 months after discharge, a majority fulfilled criteria for Long-COVID. While no associations between fatigue and cardiopulmonary abnormalities were found, exertional dyspnea correlated with impaired pulmonary function, reduced GLS and/or diastolic dysfunction
    corecore