127 research outputs found

    De novo and biallelic DEAF1 variants cause a phenotypic spectrum.

    Get PDF
    PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients

    Critical region within 22q11.2 linked to higher rate of autism spectrum disorder

    No full text
    Abstract Background Previous studies have reported no clear critical region for medical comorbidities in children with deletions or duplications of 22q11.2. The purpose of this study was to evaluate whether individuals with small nested deletions or duplications of the LCR-A to B region of 22q11.2 show an elevated rate of autism spectrum disorder (ASD) compared to individuals with deletions or duplications that do not include this region. Methods We recruited 46 patients with nested deletions (n = 33) or duplications (n = 13) of 22q11.2, including LCR-A to B (n del = 11), LCR-A to C (n del = 4), LCR-B to D (n del = 14; n dup = 8), LCR-C to D (n del = 4; n dup = 2), and smaller nested regions (n = 3). Parent questionnaire, record review, and, for a subset, in-person evaluation were used for ASD diagnostic classification. Rates of ASD in individuals with involvement of LCR-B to LCR-D were compared with Fisher’s exact test to LCR-A to LCR-B for deletions, and to a previously published sample of LCR-A to LCR-D for duplications. The rates of medical comorbidities and psychiatric diagnoses were determined from questionnaires and chart review. We also report group mean differences on psychiatric questionnaires. Results Individuals with deletions involving LCR-A to B showed a 39–44% rate of ASD compared to 0% in individuals whose deletions did not involve LCR-A to B. We observed similar rates of medical comorbidities in individuals with involvement of LCR-A to B and LCR-B to D for both duplications and deletions, consistent with prior studies. Conclusions Children with nested deletions of 22q11.2 may be at greater risk for autism spectrum disorder if the region includes LCR-A to LCR-B. Replication is needed

    Nonreentrant atrial tachycardia occurs independently of hypertrophic cardiomyopathy in RASopathy patients.

    Get PDF
    Multifocal atrial tachycardia (MAT) has a well-known association with Costello syndrome, but is rarely described with related RAS/MAPK pathway disorders (RASopathies). We report 11 patients with RASopathies (Costello, Noonan, and Noonan syndrome with multiple lentigines [formerly LEOPARD syndrome]) and nonreentrant atrial tachycardias (MAT and ectopic atrial tachycardia) demonstrating overlap in cardiac arrhythmia phenotype. Similar overlap is seen in RASopathies with respect to skeletal, musculoskeletal and cutaneous abnormalities, dysmorphic facial features, and neurodevelopmental deficits. Nonreentrant atrial tachycardias may cause cardiac compromise if sinus rhythm is not restored expeditiously. Typical first-line supraventricular tachycardia anti-arrhythmics (propranolol and digoxin) were generally not effective in restoring or maintaining sinus rhythm in this cohort, while flecainide or amiodarone alone or in concert with propranolol were effective anti-arrhythmic agents for acute and chronic use. Atrial tachycardia resolved in all patients. However, a 4-month-old boy from the cohort was found asystolic (with concurrent cellulitis) and a second patient underwent cardiac transplant for heart failure complicated by recalcitrant atrial arrhythmia. While propranolol alone frequently failed to convert or maintain sinus rhythm, fleccainide or amiodarone, occasionally in combination with propranolol, was effective for RASopathy patient treatment for nonreentrant atrial arrhythmia. Our analysis shows that RASopathy patients may have nonreentrant atrial tachycardia with and without associated cardiac hypertrophy. While nonreentrant arrhythmia has been traditionally associated with Costello syndrome, this work provides an expanded view of RASopathy cardiac arrhythmia phenotype as we demonstrate mutant proteins throughout this signaling pathway can also give rise to ectopic and/or MAT

    CHARGE-like presentation, craniosynostosis and mild Mowat-Wilson syndrome diagnosed by recognition of the distinctive facial gestalt in a cohort of 28 new cases

    No full text
    Mowat-Wilson syndrome(MWS) is characterized bymoderate to severe intellectual disability and distinctive facial features in association with variable structural congenital anomalies/clinical features including congenital heart disease, Hirschsprung disease, hypospadias, agenesis of the corpus callosum, short stature, epilepsy, andmicrocephaly. Less commonclinical features include ocular anomalies, craniosynostosis, mild intellectual disability, and choanal atresia. These casesmay bemore difficult to diagnose. In this report, we add 28MWS patients withmolecular confirmation of ZEB2 mutation, including seven with an uncommon presenting feature. Among the "unusual" patients, two patients hadclinical featuresof charge syndrome includingchoanalatresia, coloboma, cardiac defects, genitourinary anomaly (1/2), and severe intellectual disability; two patients had craniosynostosis; and three patientshadmildintellectualdisability. Sixteenpatients have previously-unreported mutations in ZEB2. Genotype-phenotype correlations were suggested in those with mild intellectual disability (two had a novel missense mutation in ZEB2, one with novel splice site mutation). This report increases the number of reported patients withMWSwith unusual features, and is the first report of MWS in children previously thought to have CHARGE syndrome. Thesepatients highlight the importance of facialgestalt in the accurate identification ofMWSwhen less common features are present
    corecore