23 research outputs found

    A walk in the PARC:developing and implementing 21st century chemical risk assessment in Europe

    Get PDF
    Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety

    The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community

    No full text
    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure

    Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms

    No full text
    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance
    corecore