6 research outputs found

    Glycintransporter im Säuger-ZNS : eine molekular- und zellbiologische Analyse

    Get PDF
    Glycin ist ein wichtiger inhibitorischer Neurotransmitter im zentralen Nervensystem. Um die glycinerge Erregungsübertragung zu sichern, muss die Glycinkonzentration an Synapsen präzise reguliert werden. Hierfür sind die Glycintransporter, GlyT1 und GlyT2, verantwortlich. Der GlyT2 ist ein präsynaptisches Protein, das in glycinergen Nervenendigungen nahe der aktiven Zone lokalisiert ist. Das über den Transporter aus dem extrazellulären Raum aufgenommene Glycin steht anschließend für die Befüllung der synaptischen Vesikel durch den vesikulären inhibitorischen Aminosäuretransporter (VIAAT) zur Verfügung. Die GlyT2-Defizienz führt in Mäusen zu einem letalen Phänotyp und verdeutlicht die Notwendigkeit eines hochaffinen Glycinaufnahmesystems in glycinergen Neuronen. Um mögliche Mechanismen zu untersuchen, die zur präzisen Lokalisation des GlyT2 in der Präsynapse führen, wurde das PDZ-Domänenbindungsmotiv (PDZ-DBM) am extremen C-Terminus bzw. die lange N-terminale Domäne dieses Transporters deletiert. Durch biochemische und pharmakologische Analysen von transfizierten HEKT-Zellen konnte gezeigt werden, dass der Verlust des PDZ-DBM oder der N-terminalen Domäne die Proteinexpression, die Glykosylierung und die Transportaktivität des GlyT2 nicht beeinflussten. Längere Deletionen des N-Terminus (&#916;AA1-184) setzten jedoch die Effizienz der Glycinaufnahme herab und ergaben im Vergleich zum wt-Protein einen um 60% reduzierten vmax-Wert, während die apparente Glycinaffinität (KM-Wert) unverändert blieb. Lokalisationsstudien und Oberflächenbiotinylierungen zeigten GlyT2 wt-Immunreaktivität an der Plasmamembran, die sich qualitativ und quantitativ nicht von denen der N- und C-terminalen Mutanten unterschied. Das PDZDBM und die N-terminale Domäne spielen folglich in der Prozessierung und der Transportfunktion des GlyT2 eine untergeordnete Rolle. Möglicherweise reduziert die fast vollständige Deletion der N-terminalen Domäne jedoch die Stabilität des GlyT2. In transfizierten hippocampalen Neuronen wurde der Einfluss des PDZ-DBM und der N-terminalen Domäne hinsichtlich der GlyT2 Lokalisation analysiert. Die transfizierten Mutantenproteine zeigten eine diffuse Verteilung mit partiellen Anreicherungen von GlyT2-Immunreaktiviät. Das wt-Protein kolokalisierte mit Synaptophysin, exzitatorischen synaptischen Markern wie PSD95 und mit den inhibitorischen Markern Gephyrin und VIAAT. Nach Deletion des PDZ-DBM hingegen zeigte der GlyT2 eine um ca. 50% verminderte Kolokalisation mit allen untersuchten synaptischen Markern. Damit konnte hier erstmals eine Funktion des PDZ-DBM für die Anreicherung von GlyT2 an Synapsen gezeigt werden. Mit N-terminalen Deletionsmutanten transfizierte hippocampale Neurone wiesen kolokalisierende GlyT2&#916;N-PSD95-Puncta zumeist in MAP2-positiven Neuriten auf, während das wt-Protein zumeist in MAP2-negativen Neuriten kolokalisierte. MAP2 ist ein mikrotubuli-assoziertes Protein, das in Dendriten, aber nicht in Axonen, auftritt und somit eine Unterscheidung derselben ermöglicht. Aufgrund der Überexpression in transfizierten Neuronen war die GlyT2-Immunreaktivität aber sowohl in axonalen als auch dendritischen Neuriten zu beobachten. Zusätzlich zu der in größeren Clustern gefundenen synaptischen GlyT2&#916;N-Immunreaktivität war eine Färbung hauptsächlich in sehr kleinen Strukturen (<= 1 &#956;m) nachzuweisen, die Transportvesikeln entsprechen könnten. Dies ist mit einem längeren Verbleib der Deletionsmutanten in intrazellulären Strukturen erklärbar. Im Hippocampus wird GlyT2 endogen nur sehr schwach in einer Subpopulation von putativ glycinergen Neuronen exprimiert. Um die Lokalisation der N-terminalen GlyT2-Proteine in Zellen zu untersuchen, die eine hohe endogene GlyT2-Expression aufweisen, wie spinalen Neuronen, die sich aber nur schlecht transfizieren lassen und in Kultur keine adulte GlyT2-Lokalisation aufweisen, wurden BAC-transgene Mäuse generiert, die myc-markierte GlyT2&#916;N-Proteine unter Kontrolle des GlyT2-Promotors exprimieren. Der Vorteil von BAC-transgenen Mauslinien ist, dass sie aufgrund der Verwendung des endogenen Promotors das Transgen nur schwach überexprimieren. Founder-Mäuse, in denen der jeweilige modifizierte BAC-Klon (mGlyT2 wt, &#916;AA14-174 oder &#916;AA14-184) integriert wurde, wurden identifiziert und mit C57BL/6J-Mäusen verpaart, um so transgene Mauslinien zu etablieren und die Lokalisation der mutierten GlyT2-Proteine zu analysieren. Zusätzlich wurde eine BAC-transgene Cre-Mauslinie generiert, die die Cre-Rekombinase in GlyT2-positiven Zellen exprimiert. Durch die Verpaarung mit konditionalen oder transgenen Mauslinien soll mit diesen GlyT2/Cre-Mäusen die Funktion einzelner Genprodukte in glycinergen Zellen untersucht werden. In dieser Arbeit wurden außerdem die Glycinrezeptor (GlyR) &#945;-Untereinheiten (UE) in GlyT2-defizienten Mäusen untersucht. GlyT2 -/- Tiere sterben in der zweiten postnatalen Woche nach der Geburt und zeigen einen starken neuromotorischen Phänotyp. Da in demselben Zeitraum ein Austausch der embryonalen &#945;2- durch die adulte &#945;1-UE erfolgt, wurde die Entwicklung der &#945;1- und der Gesamt-&#945;- Immunreaktivität in Rückenmarksschnitten von wt und GlyT2 -/- Tieren analysiert und miteinander verglichen. Die Daten zeigen, dass der &#945;-UE-Austausch in den GlyT2-defizienten Tieren ähnlich wie in wt Tieren erfolgt. In &#945;1-GlyRs ist die Öffnungszeit des aktivierten Kanals kürzer als bei &#945;2-GlyRs. Zusammen mit der geringeren Ausschüttung an Glycin aufgrund der GlyT2-Defizienz lässt sich so das Auftreten des Krampf-Phänotyps der GlyT2 -/- Mäuse nach erfolgtem UE-Austausch erklären

    Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    Get PDF
    This is the published version. Copyright WileySynaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal peptide bound to PICK1 with high affinity (Ki = 6.5 ± 0.4 μm) in an in vitro fluorescence polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b interaction regulates the modulation of GLT1 function by PKC.The authors are grateful to Sara Vasquez who provided excellent technical assistance in preparing the neuronal cultures. In addition, we are grateful for helpful discussions with Drs Gabriel Corfas, Michael Berne and Michael Robinson, to Dr Tom Schwarz for reading an early version of this manuscript, and to Dr Jeff Rothstein for providing an anti-cGLT1a antibody. We are also indebted to Dr Robinson for providing us with a detailed protocol for the biotinylation studies. This work was funded by grants from the Ron Shapiro Charitable Foundation (P.A.R.), the Muscular Dystrophy Association (P.A.R.), and National Institutes of Health research grant NS 40753 and a Mental Retardation Core Grant HD18655

    Costs of patients with chronic kidney disease in Germany.

    No full text
    BackgroundThis study aimed to determine the costs and distribution of healthcare spending of patients with chronic kidney disease (CKD) at stages 3 and 4 and on dialysis both at the individual and population level in Germany.MethodsThe study took the perspective of the German statutory health insurance (SHI) system and analyzed claims data on 3,687,015 insurees from the year 2014. To extrapolate costs to the whole SHI population, a literature search on the prevalence of CKD was conducted.ResultsAverage costs per person per year in an age- and gender-matched control group of the normal population were €2,876 (95% confidence interval [CI], €2,798 to €2,955) and ≥2.8-fold higher in CKD patients (€8,030 [95% CI, €7,848 to €8,212] at CKD stage 3, €9,760 [95% CI, €9,266 to €10,255] at CKD stage 4, and €44,374 [95% CI, €43,608 to €45,139] on dialysis). At CKD stages 3 and 4 the major cost driver was hospitalizations, contributing to more than 50% of total expenditures. Among dialysis patients, hospitalizations and dialysis-treatment costs contributed to 23% and 53% of total healthcare spending, respectively. At CKD stages 3 and 4, patients with the highest 20% of healthcare spending showed a considerable increase in per-patient costs over the reference population, while the bottom 80% of patients generated only moderately higher per-patient costs (p ConclusionsHealthcare spending of patients with CKD at stages 3 and 4 and on dialysis is concentrated among a small number of high-need patients. As hospitalizations and dialysis treatment are key drivers of total expenditures, strategies that lead to a reduction in hospitalizations, delay in dialysis onset, or increase in the availability of kidney donors should become important considerations by policymakers

    Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    No full text
    Synaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal peptide bound to PICK1 with high affinity (K(i) = 6.5 ± 0.4 μm) in an in vitro fluorescence polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b interaction regulates the modulation of GLT1 function by PKC
    corecore