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Abstract

Synaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain 

proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate 

from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 

interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the 

expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal 

library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal 

peptide bound to PICK1 with high affinity (Ki = 6.5 ± 0.4 μM) in an in vitro fluorescence 

polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate 

transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell 

lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, 

expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. 

GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal 

neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 

interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we 

found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-

terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate 

transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b 

interaction regulates the modulation of GLT1 function by PKC.
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Introduction

The extracellular concentration of the excitatory neurotransmitter L-glutamate in the CNS 

must be kept low to ensure a high signal to noise ratio during synaptic activation (Tanaka et 

al., 1997; Katagiri et al., 2001) and to prevent excitotoxicity due to excessive activation of 

glutamate receptors (Mangano & Schwarcz, 1983; Rosenberg & Aizenman, 1989; 

Rosenberg et al., 1992; Rothstein et al., 1996; Tanaka et al., 1997; Wang et al., 1998a), and 

this function is served by glutamate transporter proteins. Glutamate transporters help to 

shape the time-course of glutamate concentrations in the synaptic cleft after release from the 

presynaptic terminal (Mennerick & Zorumski, 1994; Tong & Jahr, 1994; Tanaka et al., 

1997; Overstreet et al., 1999; Auger & Attwell, 2000; Turecek & Trussell, 2000; Brasnjo & 

Otis, 2001; Huang et al., 2004), and prevent cross-talk between neighboring excitatory 

synapses (Asztely et al., 1997; Rusakov & Kullmann, 1998). Five distinct Na+-dependent 

high-affinity glutamate transporters have been cloned (Danbolt, 2001): GLAST, GLT1, 

EAAC1, EAAT4 and EAAT5. GLT1 is the predominant glutamate transporter in the 

forebrain, and is expressed in at least two variant forms, GLT1a (Pines et al., 1992) and 

GLT1b (Chen et al., 2002; Schmitt et al., 2002), both of which are expressed in neurons as 

well as in astrocytes (Chen et al., 2002, 2004; Reye et al., 2002). The expression and 

function of glutamate transporters are modulated by learning (Levenson et al., 2002; Pita-

Almenar et al., 2006), drugs of abuse (Ozawa et al., 2001; Mao et al., 2002; Xu et al., 2003) 

and pain (Niederberger et al., 2003; Sung et al., 2003).

All known glutamate transporters terminate in a PDZ domain interaction motif, except 

GLT1a (Fig. 1A). PDZ domain interactions are important in the regulation of glutamate 

receptor trafficking and function (Sheng & Sala, 2001; Song & Huganir, 2002). These 

interactions are dependent upon the C-terminal three–four amino acids of the interacting 

protein. PICK1 is a PDZ domain protein that was originally discovered as a protein kinase 

C(PKC)α binding protein (Staudinger et al., 1995, 1997). The PKCα–PICK1 interaction 

was later found to be dependent upon the activation of PKCα, which appears to cause the 

exposure of the C-terminus of PKCα (Perez et al., 2001). PICK1 may provide a means to 

bring activated PKCα into close proximity with other proteins to promote their 

phosphorylation, and has been shown to form heteromultimers with activated PKCα and α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Perez et al., 

2001). Here we report that PICK1 interacts with GLT1b, and that this interaction appears to 

regulate the modulation of GLT1 function by PKC.

Materials and methods

Ethics

All procedures on animals were performed in conformance with Children’s Hospital (CH) 

policy that all research involving animals is conducted under humane conditions, with 
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appropriate regard for animal welfare. CH is a registered research facility with the United 

States Department of Agriculture (USDA), and is committed to comply with the Guide for 

the Care and use of Laboratory Animals (Department of Health and Human Services), the 

provisions of the Animal Welfare Act (USDA), and all applicable federal and state laws and 

regulations. CH has developed institutional standards for the humane care and use of 

animals that are maintained through published policies. An Animal Care Committee has 

been established to ensure compliance with all applicable federal and state regulations for 

the purchase, transportation, housing and research use of animals. CH has filed appropriate 

assurance of compliance with the Office for the Protection of Research Risks of the National 

Institutes of Health. Discomfort and injury to animals were limited to that which was 

unavoidable in the conduct of scientifically valuable research. Analgesic, anesthetic and 

tranquilizing drugs were used where indicated and appropriate to minimize discomfort and 

pain to animals. Specifically, animals to be used as a source of tissue for tissue culture or 

immunoblot experiments were anesthetized by CO2 narcosis and then decapitated.

Antibodies

A polyclonal antibody against the C-terminal peptide NH2-ECKVPFPFLDIETCI- COOH 

corresponding to the last 15 amino acids (amino acid 548–562) of GLT1b (anti-cGLT1b) 

and a polyclonal antibody against the N-terminal peptide NH2-MASTEGANNMPKQVE- 

COOH (amino acids 1–15 of GLT1) recognizing both GLT1a and GLT1b (anti-nGLT1) 

were generated in rabbits and previously characterized (Chen et al., 2002, 2004). An anti-

PICK1 antibody was raised in chickens against the C-terminal 16 amino acid sequence of 

PICK1 (401–416; NH2-TWATGPTDKGGSWCDSCOOH). The polyclonal antibody 

against the C-terminus of GLT1a (anti-cGLT1a antibody) based on the published sequence 

(amino acid 559–573 of GLT1) was generously provided by Dr Jeff Rothstein (Johns 

Hopkins University) and has been previously characterized (Rothstein et al., 1994; Chen et 

al., 2002, 2004). A monoclonal antibody against the C-terminus of GLT1a was purchased 

from BD Biosciences Pharmingen (San Diego, CA, USA). A monoclonal anti-

synaptophysin antibody was obtained from Sigma Chemical, St Louis, MO, USA, and a 

monoclonal anti-NR1 antibody was obtained from Chemicon, Temecula, CA, USA.

Yeast two-hybrid screening using the C-terminus of GLT1b

Yeast two-hybrid screening was performed using the ProQuest Two-Hybrid System 

(Invitrogen, Carlsbad, CA, USA) with the reporter genes HIS3, URA3 and lacZ under the 

control of upstream GAL4 binding sites (Vidal, 1997). The entire C-terminal cytoplasmic 

domain of GLT1b (amino acids 469–562) was subcloned in-frame with the GAL4 DNA-

binding domain of pDBLeu vector as bait. A rat forebrain neuronal cDNA library was 

inserted into the GAL4 activation domain vector pPC86. Growth assay was performed by 

selection on plates free of leucine, tryptophan and histidine. Positive colonies were tested for 

β-galactosidase activity by transferring them onto filter paper saturated with X-gal. DNA 

from the positive colonies was isolated and transformed into DH10 bacterial cells by 

electroporation. Amplified plasmid DNAs were analysed by restriction enzymes and 

sequenced.
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C-terminal deletions were generated by polymerase chain reaction (PCR) and subsequently 

fused in-frame with the GAL4 DNA-binding domain of the pDBLeu vector. Plasmids 

expressing GLT1b, GLT1a or GLT1b mutations were co-transformed with PICK1-

expressing plasmids into yeast cells, and spread on plates free of leucine and tryptophan. 

Growth assays on plates free of leucine, tryptophan and histidine, and X-gal assays were 

used to confirm the interaction or lack of it.

Purification of GST–rPICK1

Rat PICK1 (rPICK1) was purified as previously described (Madsen et al., 2005). Briefly, the 

entire coding region of rPICK1 2–416 was amplified and introduced in-frame with GST in 

the fusion vector pET41 using the MunI and AvrII sites. The GST–PICK1 fusion was 

expressed in the BL21DE3 pLysS strain by induction at OD600 = 0.6 using 0.5 μM IPTG 

(Sigma) and grown at 30 °C for 3 h. The bacteria were freeze/thaw lysed in buffer A [Tris, 

50 mM, pH 7.4; NaCl, 125 mM; Triton X-100, 0.1%; DNAse I, 20 μg/mL; dithiothreitol 

(DTT), 1 mM (Sigma); bacterial protease inhibitor cocktail (Sigma)]. Membranes and cellular 

debris were pelleted, and the supernatant incubated with glutathione-coated Sepharose beads 

(Pharmacia) under slow rotation. The beads were subjected to three bulk washes in buffer A, 

and PICK1 was cleaved from GST overnight at 4 °C with thrombin protease in buffer A. 

The purified protein was routinely analysed by fast performance liquid chromatography 

(FPLC) size-exclusion chromatography revealing a single protein peak with an estimated 

molecular mass of approximately 100 kDa corresponding to a homodimer (data not shown). 

The integrity of the protein was further substantiated by circular dichroism denaturation 

experiments showing evidence for secondary structure that was markedly reduced upon 

extended incubation (> 3 days; T.S. Thorsen, K.L. Madsen, M. Gajhede, J. Kastrup and U. 

Gether, unpublished observation).

Peptide binding using fluorescence polarization

The PICK1 fluorescence polarization assay was performed according to previously 

described protocols (Madsen et al., 2005). The competition binding was done by titrating a 

fixed concentration of PICK1 (~1 μM) and an Oregon Green-labeled peptide of the 13 C-

terminal residues of the dopamine transporter (DAT; ~40 nM) with increasing amounts of 

different non-labeled peptides [all synthesized and high-pressure liquid chromatography 

(HPLC)-purified by the Tufts University Core Facility (Boston, MA, USA)]. The assay was 

performed in 100-μL volumes in microtiter-plates and read with a Chameleon plate-reader 

(HIDEX) in the FP mode using a 488-nm excitation filter and a 535-nm long-pass emission 

filter. FP was calculated according to the equation: FP = (IV − g × IH)/(IV + g × IH), where 

IV and IH are the fluorescence measured in the vertical and horizontal plane, respectively, 

and g is an apparatus-specific correction factor. Equilibrium competition binding isotherms 

are constructed by plotting FP vs the concentration of unlabeled peptide. To determine Ki, a 

curve was fitted to the equation FP = FPf + ((FPb − FPf) × [Rt])/(Kd × (1 + X/Ki) + [Rt]), 

with FPf and FPb being the FP value of the free and bound peptide, [Rt] the concentration of 

PICK1, and Kd the apparent dissociation constant determined from parallel saturation 

experiments. Ki, FPb and FPf were treated as free parameters. The binding isotherms were 

constructed from three independent purifications, and data analysis was performed in Prism 

4.0 (GraphPad Software).

Bassan et al. Page 4

Eur J Neurosci. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Expression of recombinant proteins in COS7 cells

COS7 cells were maintained at 37 °C in a humidified 5% CO2 incubator in Dulbecco’s 

modified Eagle’s medium (DMEM; Invitrogen 11960-044) supplemented with 10% fetal 

bovine serum and non-essential amino acids (Invitrogen 11140-035, diluted 1 : 100) in 24-

well plates. The coding sequences of GLT1b and GLT1a were subcloned downstream from 

the CMV promoter in the mammalian expression vector pcDNA3 (Invitrogen), and the 

PICK1 coding region was subcloned in-frame at the 3′-end of the DNA encoding EGFP in 

the EGFP-C1 vector (BD Biosciences Clontech, Palo Alto, CA, USA). A deletion mutant 

lacking the last four amino acids was generated by PCR mutagenesis. All constructs were 

confirmed by sequencing. At 60–80% confluence, cells were transfected with GLT1a, 

GLT1b, GLT1bΔETCI (last four amino acids deleted), EGFP or EGFP–PICK1 using 

Lipofectamine 2000 reagent (Invitrogen). For each well, 800 ng DNA was mixed with 50 μL 

OptiMEM medium and, in a separate tube, 2 μL Lipofectamine 2000 with 50 μL OptiMEM. 

Both tubes were incubated for 5 min at room temperature. Both solutions were combined to 

obtain the transfection mix and incubated for 20 min at room temperature, then added to 

each well of a 24-well plate of cells that had been washed once with phosphate-buffered 

saline (PBS). Cells were then incubated at 37 °C for 6 h before medium was changed back 

to normal growth medium and cells were incubated for 24 h before immunocytochemistry 

studies.

Immunocytochemistry on COS7 cells

In brief, COS7 cells were washed twice in PBS and fixed with 4% paraformaldehyde in PBS 

for 10 min at room temperature, and then rinsed three times with PBS. PBS buffer with 

0.1% Triton X-100 containing normal goat serum (5%) and 1% bovine serum albumin 

(BSA) was used to permeabilize cells and to block non-specific protein binding sites. Cells 

were incubated in anti-nGLT1 antibody (1.5 μg/mL), washed three times with PBS and 

detected with goat anti-rabbit IgG conjugated with Alexa594 Red. Coverslips were washed 

twice with PBS and incubated with bisbenzamide (1 μg/mL) for 10 min. Coverslips were 

subsequently mounted with Fluoromount G (Fisher) and examined by confocal fluorescence 

microscopy. The anti-nGLT1 antibody labeled COS7 cells only if they had been transfected 

with GLT1-expressing plasmids. Occasionally nucleoli staining was observed in COS7 

cells.

Primary culture of hippocampal neurons and immunocytochemistry

Cultures of hippocampal neurons were prepared using methods similar to those previously 

described (Goslin & Banker, 1991), with modification to permit the selective culturing of 

neurons (Rosenberg, 1991; Wang et al., 1998b). Briefly, embryonic day 18 Long–Evans rat 

hippocampi were removed and dissociated using papain (Worthington, Lakewood, NJ, 

USA) 10 U/mL for 15 min followed by chicken egg white trypsin inhibitor (Sigma T-9253) 

10 mg/mL and trituration in Hank’s balanced saline solution (HBSS). Cells were plated in 

growth medium [Neurobasal medium (Invitrogen) supplemented with 2% B27 supplement 

(Invitrogen), 500 μM glutamine, 25 μM glutamate and penicillin (100 U/mL) and streptomycin 

(100 μg/mL)] at a density of 75 000 cells/well in 12-well plates precoated overnight with 

37.5 μg/mL poly-D-lysine (Fisher Scientific, Suwanee, GA, USA) and 2.5 μg/mL laminin 
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(Fisher) in water. On the second day in vitro, 5 μM cytosine arabinoside was added for 48 h 

to inhibit cell proliferation. On the fourth day of culture, the medium was completely 

removed and replaced with growth medium that had been conditioned by contact with 

astrocyte cultures for 24 h. Medium was then partially changed (50%) every 3 days with the 

astrocyteconditioned medium.

At the 14th day in vitro, neuronal cells were fixed with 4% paraformaldehyde in HBSS for 

10 min at room temperature and then rinsed three times with Tris-buffered saline (TBS 

buffer) containing 50 mM Tris-HCl, pH 7.4, and 150 mM NaCl. TBS buffer with 0.1% Triton 

X-100 (TBS-T) containing normal goat serum (4%) was used to permeabilize cells and to 

block non-specific protein binding sites. Cells were incubated in anti-cGLT1b antibody (3 

μg/mL) solution at 4 °C overnight, washed three times with TBS-T and detected with goat 

anti-rabbit IgG conjugated with Oregon Green (Molecular Probes, Eugene, OR, USA) at 1 : 

500 dilution. Then the coverslips were washed three times with TBS-T and blocked again 

with 4% normal goat serum in TBS-T for 1 h. Anti-PICK1 antibody at 0.64 μg/mL, mouse 

monoclonal anti-synaptophysin antibody (Sigma Chemical) at 1 : 250 dilution, or mouse 

monoclonal anti-NR1 antibody (Chemicon) in 2% goat serum at 1 : 200 dilution were then 

added overnight. Coverslips were then washed three times with TBS-T and detected with 

goat anti-chicken IgG conjugated with Alexa 488 (for anti-PICK1 antibody) or goat anti-

mouse IgG (for anti-synaptophysin or anti-NR1) conjugated with Alexa594 (Molecular 

Probes) at 1 : 500 dilution. Coverslips were subsequently mounted with Fluoromount G 

(Fisher) and examined by confocal fluorescent microscopy. No cross-reaction was found 

between the anti-chicken, anti-mouse or anti-rabbit secondary antibodies and the primary 

antibodies made from different species.

Primary cerebral neuronal cultures

Neuronal cultures were prepared from embryonic day 16 Sprague–Dawley rat fetuses using 

methods similar to those previously described (Dichter, 1978), but modified to produce 

cultures that contained < 1% astrocytes (Rosenberg & Aizenman, 1989; Rosenberg, 1991; 

Rosenberg et al., 1992; Wang et al., 1998b). Cultures were initially plated on poly-L-lysine-

coated 24-well plastic plates (Costar, Cambridge, MA, USA) using an 80 : 10 : 10 (v/v) 

mixture of DMEM (Life Technologies 11960-010), Ham’s F-12 (Sigma, N-4888), heat-

inactivated iron-supplemented calf serum (Hyclone A2151), containing 2 mM glutamine, 25 

mM HEPES, 24 U/mL penicillin and 24 μg/mL streptomycin, and maintained in a 5% CO2 

(balance air) incubator at 36 °C. Cell proliferation was inhibited by exposure to 5 μM 

cytosine arabinoside at 24 h in vitro for 72 h. On the fourth day of culture, the medium was 

completely removed and replaced with 90% MEM, 10% NuSerum IV (Collaborative 

Research), 2 mM glutamine, 5 mM HEPES, containing 50 units/mL superoxide dismutase 

(Boehringer Mannheim, Indianapolis, IN, USA), 20 units/mL catalase (Sigma CV-40), total 

glucose 11 mM, and total sodium bicarbonate 9.3 mM, plus 2% B27 supplement (Life 

Technologies 17504-036). Medium was not subsequently changed. To prevent evaporation 

of water, culture dishes were kept on ‘wet dishes’ containing wet filter paper until they were 

used.
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Immunoprecipitation and immunoblot analysis

Two days after transfection, cells were lysed with RIPA buffer containing 50 mM Tris-Cl, pH 

7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 1% Triton X-100 and 0.1% sodium dodecyl 

sulfate (SDS) supplemented with 17 μg/mL leupeptin, 1 mM phenylmethylsulfonyl fluoride 

and 5 mM DTT. Fresh rat forebrain was homogenized in the same buffer. Cell lysate was 

shaken at 4 °C for 2 h for protein extraction, and then centrifuged at 60 000 g at 4 °C for 60 

min. Supernatant was then removed and protein concentration measured with a protein assay 

kit (Pierce Chemical, Rockford, IL, USA). For immunoprecipitation, 30 μL of protein A/G 

agarose (Oncogene Science, Cambridge, MA, USA) was preincubated with 2 μg of anti-

nGLT1 antibody or 2 μg of goat anti-chicken IgG in RIPA buffer for 1 h and, after washing, 

2 μg of anti-PICK1 antibody was added to protein A/G with anti-chicken IgG and incubated 

for another hour. Protein extract (1 mg in 500 μL) from the co-transfected COS7 cells or rat 

brain tissue was then added to each immunoprecipitation tube and incubated at 4 °C for 4 h 

to overnight. For the control groups, equal amounts of rabbit or chicken IgG was used in 

place of anti-nGLT1 or anti-PICK1 antibodies. In control experiments, lysates from COS7 

cells transfected either with PICK1 or GLT1b were obtained and mixed prior to 

immunoprecipitation. Precipitates were washed four times with RIPA buffer and then twice 

with TBS (50 mM Tris-Cl, pH 7.5, 150 mM NaCl), solubilized with gel loading buffer 

containing 62.5 mM Tris, pH 6.8, 10% glycerol, 1.6% SDS and 640 mM β-mercaptoethanol, 

separated on 7.5% SDS polyacrylamide gels (10 μg per lane) and then transferred to 

polyvinylidene fluoride membranes (NEN Life Science Products, Boston, MA, USA) by 

electroblotting. The gels were silver-stained to check for equal loading. Blots were 

incubated with primary antibodies (cGLT1a at 14 ng/mL, cGLT1b at 1.6 μg/mL and nGLT1 

at 1 μg/mL) overnight at 4 °C in 5% non-fat milk, 100 mM Tris, pH 7.5, 306 mM NaCl and 

0.01% Tween 20, and then washed three times with Tris-NaCl-Tween buffer, incubated for 

1 h with horseradish peroxidase-conjugated goat anti-rabbit IgG (Amersham Biosciences, 

Piscataway, NJ, USA) at 1 : 2500 dilution and washed again. Immunoreactive proteins were 

detected using enhanced chemiluminescence (NEN Life Science Products).

Uptake studies

Previously published procedures were followed for measuring the uptake of glutamate 

(Wang et al., 1998b) into cultured cells. Cells were exposed to tritiated L-glutamate either in 

the presence (sodium buffer) or absence (choline buffer) of sodium, and the radioactivity 

taken up by the cultures in the absence of sodium was subtracted from that taken up by the 

cultures in the presence of sodium to isolate sodium-dependent transport. The sodium-

independent component was always less than 10%. For COS7 cells, uptake in the absence of 

sodium was 9.6 ± 3.8%; for neurons uptake in the absence of sodium was 1.5 ± 1%. 

Therefore, in some experiments uptake was measured only in the presence of sodium. Cells 

grown in 24-well plates were washed twice with sodium or choline buffer at 37 °C before 

being exposed at 37 °C for 5 min to [3H]-L-glutamate (catalogue #TRK445, Amersham; 

specific activity 63 Ci/mmol). For uptake studies other than saturation studies, 30 μM L-

glutamate was used with selected concentrations of drugs. The uptake assay was stopped by 

removal of the tracer solution and addition of ice-cold choline buffer containing 1% BSA, 

followed by three washes in choline/BSA buffer. After stopping uptake with ice-cold 
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choline-containing buffer, cells were solubilized in 0.1 N NaOH. Aliquots of this lysate 

were analysed for protein with the Bradford protein assay (Bradford, 1976; Bio-Rad, 

catalogue #500-0113-5) and radioactivity by liquid scintillation counting. The physiological 

saline for uptake studies contained (in mM): NaCl or choline chloride, 140; KCl, 2.5; CaCl2, 

1.2; MgCl2, 1.2; K2HPO4, 1.2; glucose, 10; Tris base, 5; HEPES, 10; pH 7.4; osmolality 300 

(Garlin et al., 1995).

Myristoylated peptides

N-terminal myristoylated peptides were synthesized by the Tufts University Core Facility 

(Boston, MA, USA). Myristoylated peptides were purified by SEP-PAK C18 cartridges. 

Briefly, peptides were first dissolved in dimethylsulfoxide (DMSO) at a concentration of 

100 mM, then diluted 1 : 100 with 80% acetonitrile and 0.1% trifluoroacetic acid. Each 

cartridge was loaded with 1 mL of this solution, and five fractions were generated: flow-

through; wash 1 and 2 (washed with 80% acetonitrile and 0.1% trifluoroacetic acid); elution 

1 and 2 (eluted with 100% acetonitrile and 0.1% trifluoroacetic acid). Fractions were 

analysed by HPLC and mass spectroscopy, and it was found that most contaminants 

including small molecules used in the synthesis and short truncated peptides or peptides with 

deletions were removed in the flow-through and washing steps.

Purified N-terminal myristoylated peptides were dissolved in DMSO to produce a 500–1000 

× stock. Cultures were treated with 2.5 μM (purified) peptide, or vehicle (DMSO) in controls, 

in calcium/magnesium-free Earle’s balanced salt solution (CMF-Earle’s) containing 10 μM 

MK-801 for 1.5 h, and then were exposed to 400 nM phorbol 12-myristate 13-acetate (PMA) 

with or without (2.5 μM) peptide in CMF-Earle’s containing 10 μM MK-801 for 2 h. Controls 

were treated with the vehicle, with or without the peptide, for 2 h.

Biotinylation of cell surface proteins

The biotinylation procedure was performed as described previously (Kalandadze et al., 

2002), with minor modification. Briefly, plates of neurons were placed on ice after the 

treatments described above. The cells were rinsed twice with ice-cold PBS containing 0.1 

mM CaCl2 and 1 mM MgCl2 (PBS-Ca/Mg) and then were incubated in this same solution 

supplemented with 1 mg/mL biotin (EZ-link-sulfo-NHS-LC-Biotin, Pierce cat # 21335) for 

20 min on ice at 4 °C in a cold room. After incubation, cells were rinsed three times with 

PBS-Ca/Mg containing 100 mM glycine and incubated in this buffer for 30 min at 4 °C to 

quench the unreacted biotin. Cells were then lysed [20 mM CHAPS (Sigma cat # C-9426), 10 

mM sodium phosphate buffer pH 7.4, 150 mM NaCl]; or RIPA buffer (Boston Bioproducts cat 

# BP-115) with protease inhibitor plus EDTA cocktail tablet (Roche cat # 1836153). The 

cell lysates were collected and sonicated for 5 s. After centrifugation (14 000 g for 20 min at 

4 °C), protein concentration of the supernatant was measured by a protein assay (Bio-Rad, 

cat # 500-0113-5). The concentrations of all samples were equalized using lysis buffer. 

Some of these supernatants were then frozen at −20 °C until use. The supernatants were 

mixed with avidin beads (Immobilized Immunopure Avidin, Pierce cat # 20219) and rotated 

overnight in the cold room. The biotinylated proteins were then batch-extracted using 

avidin-coated Sepharose beads. After centrifugation (14 000 g for 20 min at 4 °C), the beads 

were collected and washed four times with the same lysate buffer that was used for 
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solubilization containing protease inhibitors. Biotinylated proteins (cell surface proteins) 

were released by incubation in SDS–polyacrylamide gel electrophoresis (PAGE) loading 

buffer at 37 °C for 20 min. The mixture was centrifuged (14 000 g), and the supernatant was 

transferred to a fresh tube and frozen until analysis.

Results

We sought to identify proteins that interact specifically with GLT1b using the C-terminal 

cytoplasmic domain of GLT1b (the last 94 amino acids) as bait in a yeast two-hybrid screen 

(Vidal, 1997) of a neuronal cDNA library. We identified two clones that, when sequenced, 

were shown to contain the full coding region of rat PICK1. The sequence of rat PICK1 has 

been deposited in GenBank (#AF542094). PICK1 is a PDZ domain protein discovered as an 

interactor with PKCα (Staudinger et al., 1995). Its function has been best characterized in its 

role in the clustering and trafficking of glutamate receptors at synapses (Dev et al., 1999; 

Xia et al., 1999; Takeya et al., 2000; Jaulin-Bastard et al., 2001; Duggan et al., 2002; 

Hruska-Hageman et al., 2002). PICK1 has also been found to interact with monoamine 

transporters (Torres et al., 2001; Bjerggaard et al., 2004) as well as other proteins, including 

EphB receptors and ephrins (Torres et al., 1998), ββ2/HER2 receptors (Jaulin-Bastard et al., 

2001), prolactin-releasing peptide receptor (Lin et al., 2001b), a phorbol ester inducible gene 

TIS21/PC3/BTG2 (Lin et al., 2001c) and ADP ribosylation factors (Takeya et al., 2000).

Because the interaction of PICK1 with synaptic proteins is mediated by its PDZ domain, we 

tested whether the class I type PDZ interaction motif in GLT1b (Fig. 1A) is specific and 

sufficient for the PICK1–GLT1b interaction. We examined the effect of various mutations 

of the GLT1b C-terminus on interaction with PICK1 in the yeast two-hybrid system (Fig. 

1B), as well as the interaction of PICK1 with the C-terminal cytoplasmic domain of GLT1a. 

Deletion of the last four amino acids (ETCI) or addition of a tyrosine residue to the C-

terminus of GLT1b completely abolished the interaction with PICK1 (Fig. 1B). In addition, 

we found that PICK1 did not interact with GLT1a. However, substitution of serine or 

alanine for the glutamate residue at the −3 position, or of isoleucine for the threonine residue 

at the −2 position, did not interrupt the GLT1b–PICK1 binding. Therefore, the interaction of 

GLT1b with PICK1 in yeast is dependent upon the amino acid sequence at the C-terminus of 

GLT1b, with a tolerance for substitutions at the −3 and −2 positions that has been found to 

be characteristic of PICK1 but atypical of class I PDZ domains (Perez et al., 2001; Sheng & 

Sala, 2001).

To characterize the interaction of PICK1 and GLT1b in further detail and assess the affinity 

of the interaction, we used a recently developed in vitro competitive fluorescence 

polarization assay (Madsen et al., 2005) to determine the binding affinities of PICK1 with 

the C-termini of GLT1b, GLT1b mutants, other glutamate transporters and known PICK1 

interacting proteins. In this assay, with both components in solution, the binding of a 

fluorescently labeled peptide to a larger protein (in this case PICK1) is detected as an 

increase in fluorescence polarization because of a decrease in rotational diffusion. We 

characterized the interaction of peptides with PICK1 by measuring the competition for 

binding to PICK1 of the peptide of interest with a fluorescently tagged C-terminal peptide of 

the DAT. Using the fulllength purified PICK1 and a peptide of the C-terminal 13 residues of 
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GLT1b (GLT1b13) we measured the Ki of the interaction to be 6.5 ± 0.4 μM (Fig. 2; Table 

1). A peptide of the C-terminal 10 residues behaved similarly (Fig. 2). The affinity 

demonstrated is in the range of other PDZ interactions characterized by fluorescence 

polarization (Niethammer et al., 1998; Lin et al., 1999; Lim et al., 2002; Piserchio et al., 

2002; Reina et al., 2002) and suggests that the 13 C-terminal residues of GLT1b are 

responsible for a direct interaction with PICK1 via the canonical PDZ binding mode of the 

ETCI sequence docking in the PDZ binding groove of PICK1. The observed affinity of 

GLT1b for PICK1 was slightly better than that of GluR2 (9 ± 1 μM; Table 1) and 

significantly better than that of PKCα (33 ± 2 μM; Fig. 5B and Table 1), but slightly lower 

than that of the DAT (Ki = 2.3 ± 0.1 μM; Madsen et al., 2005). The binding of the GLT1b 

peptide to PICK1 was almost completely disrupted by adding a tyrosine to the C-terminus of 

the GLT1b peptide (GLT1b13 + Y; Fig. 2 and Table 1), which presumably prevents the 

docking of the peptide into the PDZ domain binding groove. Furthermore, the affinity was 

severely compromised by deletion of the last four residues of the peptide (GLT1ΔDETCI; 

Fig. 2 and Table 1), demonstrating the critical role played by the C-terminal sequence, 

characteristic of PDZ domain interactions. The interaction was also disrupted by substituting 

an amide for a carboxyl group at the C-terminus without any change in sequence (Fig. 2 and 

Table 1).

Single alanine substitutions of the last three residues [P0 (the position of the last amino acid 

of the primary sequence), P1 and P2], which are thought to dock into the PDZ domain 

binding groove, however, were only partially disruptive compared with the deletion of the 

last four amino acids (GLT1b-ETCA, GLT1b-ETAI and GLT1b-EACI, respectively, in Fig. 

3 and Table 1). Given the relative lack of specificity for the three C-terminal residues, we 

speculated that more distal motifs in the C-terminus might contribute to the binding, as has 

been reported for other ligands for PICK1 (Dev et al., 2000; Hirbec et al., 2002). To test this 

we did N-terminal truncations of the GLT1b13-mer peptide and studied their interaction 

with PICK1 (Fig. 4 and Table 1). Deleting the two N-terminal residues (P12 and P11, 

yielding GLT1b11) increased the affinity slightly (Figs 2 and 4, and Table 1); however, 

deleting the next N-terminal residue (P10) yielding GLT1b10 caused a significant drop in 

affinity (Fig. 4 and Table 1). Deletion of the next residue (P9) also had a significant effect 

(GLT1b9), but deletion of P8 had little effect. Another significant drop in affinity was seen 

with removing the N-terminal residue of GLT1b8 (P7) to yield GLT1b7. These results 

suggested that residues from P10 to P7 (PFPF) added significantly to the binding.

Finally, we tested C-terminal 11 amino acid peptides from other glutamate transporters (Fig. 

5 and Table 1), all of which, except GLT1a, have a PDZ domain interaction motif (Fig. 1A). 

As illustrated in Fig. 5A, the GLT1a, GLAST, EAAC1 and EAAT4 peptides interacted only 

with very low affinity, if at all, with PICK1; however, the EAAT5 peptide interacted with an 

affinity comparable to that of GLT1b (Fig. 5A and Table 1). We also tested peptides based 

on two other variant forms of GLT1, GLT1c (Rauen et al., 2004) and EAAT2d (accession 

#AI798939). GLT1c but not EAAT2d interacted with PICK1, with an affinity comparable to 

PKCα (Fig. 5B and Table 1). The results of all studies using fluorescence polarization are 

summarized in Table 1. For comparison, we have included data obtained with PKCα, GluR2 

and DAT C-terminal peptides. As an additional test of the specificity of interaction between 
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GLT1b and PICK1, we tested the effect of a mutation of PICK1, A87L, that was previously 

found to not interact with DAT (Madsen et al., 2005). This mutant PICK1 failed to interact 

with GLT1b as well (data not shown).

The next question we addressed was whether GLT1b and PICK1 interact in mammalian 

cells and in neurons. A peptide-specific antibody was raised in chickens against the C-

terminal 16 amino acids of PICK1 (NH2-CGATGPTDKGGSWCDS-COOH). This antibody 

recognized a protein that migrated with an apparent molecular mass of ~50 kDa in lysates 

from neuronal cultures and rat brain tissue (Fig. 6A). The immunolabeling of this band was 

blocked by preadsorption of the antibody with the peptide against which it was raised (Fig. 

6A). COS7 cells were transfected with pcDNA3 expressing GLT1b, or EGFPC1 expressing 

an EGFP–PICK1 fusion protein, or both plasmids. The anti-PICK1 antibody 

immunoprecipitated the EGFP–PICK1 fusion protein, represented by a band at ~80 kDa on 

immunoblot, from COS7 cells co-transfected with EGFP–PICK1 and GLT1b, and GLT1b 

protein was also immunoprecipitated by the PICK1 antibody (Fig. 6B).

Control experiments with preimmune chicken IgG showed no precipitation of either protein. 

In COS7 cells co-transfected with GLT1a and EGFP–PICK1 expressing plasmids, GLT1a 

protein was not present in the anti-PICK1 immunoprecipitated pellet. As a control for non-

physiological association in the homogenate, lysates from COS7 cells separately expressing 

either PICK1 or GLT1b were mixed prior to immunoprecipitation. We found that when 

lysates of COS7 cells expressing either EGFP–PICK1 or GLT1b were mixed, PICK1 and 

GLT1b did not co-immunoprecipitate, indicating that the association of PICK1 and GLT1b 

found in COS7 cells co-expressing these proteins was due to an association occurring in 

cells, and not simply in the lysate after homogenization. To test whether the interaction 

between GLT1b and PICK1 in COS7 cells was dependent upon the sequence at the C-

terminus, we co-expressed a GLT1b mutant lacking the last four amino acids with PICK1. 

Deletion of the four amino acids at the C-terminus of GLT1b greatly diminished the amount 

of GLT1b co-precipitated using the anti-PICK1 antibody (data not shown). These results 

demonstrate that the interaction between GLT1b and PICK1 found in yeast and in solution 

also occurs between the full-length recombinant proteins expressed in mammalian cells.

The next question we addressed was whether it could be demonstrated that endogenous 

GLT1b and PICK1 interact in their sites of expression in the brain. We found that in rat 

whole brain lysate, anti-PICK1 antibody immunoprecipitated PICK1 protein and pulled 

down GLT1b protein (Fig. 6C). The antibody directed against the C-terminal sequence of 

GLT1b, anti-cGLT1b, however, failed to pull down PICK1, although GLT1b protein itself 

could be precipitated by this antibody (data not shown). The inability of the anti-cGLT1b 

antibody to immunoprecipitate complexes of GLT1b and PICK1 may be because this 

antibody was raised against the region of GLT1b with which PICK1 interacts. Therefore, 

anti-cGLT1b must compete with PICK1 protein for binding to the GLT1b C-terminus. 

Consistent with this view, PICK1 protein co-immunoprecipitated with GLT1b from the rat 

brain when an anti-N-terminal GLT1 antibody was used for immunoprecipitation (Fig. 6C). 

Interestingly, GLT1a protein was also precipitated by both anti-cGLT1b antibody and anti-

PICK1 antibody, but appeared only in multimers (size of monomer is about 66 kDa; Fig. 

6C). Because GLT1a does not interact with PICK1 directly in yeast, in co-transfected COS7 
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cells, or in solution, it is likely that GLT1a was present in the GLT1b–PICK1 complex 

through its interaction with GLT1b. These results, together with previous results 

demonstrating the tendency of GLT1 to aggregate with itself (Haugeto et al., 1996) in 

trimers (Gendreau et al., 2004), and the X-ray crystallographic demonstration of trimer 

formation by a bacterial glutamate transporter (Yernool et al., 2004), suggest the formation 

of heterotrimers of GLT1a and GLT1b. Another neuronal glutamate transporter, EAAC1, 

was not detectable in the GLT1b–PICK1 pellet using an anti-EAAC1 antibody (generously 

provided by Dr Jeff Rothstein; data not shown).

We next asked whether the co-expression of GLT1b and PICK1 might influence the 

subcellular distribution of either protein. Co-expression of the transporter GLTlb or 

GLTlbΔ4 with EGFP did not alter the localization of the transporters in the plasma 

membrane or in the perinuclear compartments in comparison to when the transporters were 

expressed alone (Fig. 7A and data not shown). No colocalization of GLTlb or GLTlbΔ4 with 

EGFP was found on the plasma membrane (Fig. 7A). In contrast, when cells were co-

transfected with GLTlb and EGFP-PICK1, we found colocalization of both proteins on the 

plasma membrane (colocalization on the membrane was found in 92% of cells; n = 36) and 

in the perinuclear compartments (yellow labeling, Fig. 7A). In contrast, colocalization was 

rare in cells that co-expressed GLTlbΔ4 and EGFP-PICK1 (colocalization on the membrane 

was found in 17% of cells; n = 42). The low amount of colocalization found on the plasma 

membrane with GLTlbD4 and PICK1 co-expression was similar to the fraction of cells with 

PICK1 found on the plasma membrane when expressed alone (14% of cells; n = 35). The 

majority of cells showed PICK1 in the cytoplasm only (Fig. 7B). To further test whether the 

effect of GLTlb was specific, we co-transfected COS7 cells with GLTla, which does not 

possess a PDZ binding sequence at its C-terminus (Fig. 7B). Similar to what was observed 

with GLTlbΔ4, no alteration of GLTla or PICK1 localization was found with their co-

expression (colocalization of GLTla with EGFP-PICK1 on the plasma membrane was found 

in 15% of cells; n = 33). These findings demonstrate that GLT1b and PICK1 interact in 

cells, and that this effect is dependent upon the last four amino acids of GLT1b, consistent 

with a PDZ domain interaction.

Next we examined the localization of GLT1b and PICK1 in hippocampal neuronal cultures 

(Fig. 8A–L). Immunocytochemistry with the rabbit anti-C-terminal GLT1b antibody and the 

chicken anti- PICK1 antibody demonstrated that both proteins were expressed in a punctate 

pattern in processes as well as on cell bodies in cultured hippocampal neurons (Fig. 8A–C). 

At higher magnification, the punctate pattern of labeling with both anti-cGLT1b and anti-

PICK1 antibodies is evident, consistent with a synaptic localization (Fig. 8D–F). PICK1 has 

already been shown to be expressed in cerebral neurons in culture with a punctate 

distribution that overlaps with synaptic markers (Hruska-Hageman et al., 2002). This 

association of GLT1b with synapses was tested by performing double-label 

immunocytochemistry using the presynaptic marker synaptophysin (Fig. 8G–I). There was 

partial co-localization of synaptophysin and GLT1b (yellow in Fig. 8I). For a postsynaptic 

marker, an antibody against the N-methyl-D-aspartate (NMDA) receptor subunit NR1 was 

used (Fig. 8J–L). Again, as with synaptophysin, partial co-localization of GLT1b with NR1 

was demonstrated (yellow in Fig. 8L).
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PICK1 was originally discovered as a PKCα binding protein (Staudinger et al., 1995), and 

the PKCα–PICK1 interaction was found to be dependent upon the activation of PKCα 

(Perez et al., 2001). PICK1 contains a BAR (Bin/ Amphiphysin/Rvs) domain, a region that 

recognizes membrane curvature, located in the C-terminal half of the molecule (Jin et al., 

2006; Steinberg et al., 2006) and through which it may dimerize, bringing two dissimilar 

PICK1 interacting proteins into close apposition. Therefore, PICK1 has been conceived of 

as an adaptor to recruit PKCα into complexes with PICK1 binding target proteins to 

improve the specificity and efficacy of PKC action (Perez et al., 2001; Hirbec et al., 2002). 

Deployment of neurotransmitter transporters to the plasma membrane has been shown to be 

subject to regulation by PKC activation (Qian et al., 1997). Although the effects of PKCα 

activation on GLT1 have been controversial (Casado et al., 1993; Tan et al., 1999), GLT1 

protein (Kalandadze et al., 2002), GLT1 function (Fang et al., 2002), and GLT1 protein and 

function (Zhou & Sutherland, 2004) have more recently been shown to be downregulated by 

PKC activation in stably transfected C6 glioma cells, Xenopus laevis oocytes and astrocytes, 

respectively. We therefore hypothesized that PICK1 regulates the effect of PKCα on GLT1. 

We first tested this hypothesis in a heterologous expression system using either COS7 cells 

or MDCK cells, but were not able to obtain consistent results. We then queried whether a 

functional consequence of the GLT1–PICK1 interaction might be demonstrable in primary 

forebrain neurons, in which the native environment of these proteins was preserved, unlike 

in a heterologous expression system. We tested the effect of PKC activation in these 

cultures, and typically found no significant change in glutamate uptake as a result of 

exposure to PMA (400 nM, up to 2 h exposure) without (Fig. 9A) or with the phosphatase 

inhibitor okadaic acid present (data not shown). There was also no consistent effect seen 

with exposure to an inhibitor of PKC, BISII (data not shown). To account for the lack of 

response of neuronal cultures to PMA, and based on results of others (see above) showing a 

downregulation of GLT1 function by treatment with phorbol esters, we hypothesized that in 

neurons the GLT1b–PICK1 interaction might serve to inhibit the effect of PKC activation on 

GLT1. If so, then disrupting that interaction might be expected to reveal the effect of PKC 

action on GLT1-mediated glutamate transport.

Previous studies have shown that myristolation of peptides renders them permeable to 

plasma membranes (Eichholtz et al., 1993; Ward & O’Brian, 1993), and a myristolated 

peptide based on the C-terminus of GluR2 has been used to disrupt the GluR2–PICK1 

interaction in vivo (Garry et al., 2003). We synthesized a myristoylated decoy peptide 

designed to compete with the interaction of GLT1b with PICK1 (FPFLDIETCI-COOH), and 

a peptide identical in sequence but amidated at the C-terminus as a control (FPFLDIETCI-

CHO; Fuh et al., 2000). Neurons treated with control peptide or vehicle showed no 

significant decrease in glutamate uptake upon PKC activation (Fig. 9A). In contrast, neurons 

treated with the active decoy peptide showed a significant decrease, to 63.8 ± 19.6% of 

control (P < 0.01) glutamate uptake. To assess the specificity of the effect of the 

myristolated peptide, we exploited the fact that both GLT1 and EAAC1 are expressed in 

cultured rat forebrain neurons (Wang et al., 1998b; Chen et al., 2002). To determine whether 

the detected changes in glutamate uptake were a specific change in GLT1 function, we 

repeated the experiment in the presence and absence of DHK (300 μM), a specific inhibitor of 

GLT1 at this concentration (Garlin et al., 1995; Wang et al., 1998b; Kalandadze et al., 2002; 
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Fig. 9B and C). In this series of experiments, PMA significantly decreased glutamate 

transport only in cells pretreated with the active decoy peptide (Fig. 9B). The DHK-sensitive 

component of glutamate transport was significantly inhibited (49.2 ± 7.1% decrease with 

PMA; n = 5; P < 0.01; Fig. 9C) by PKC activation in neurons treated with the active decoy 

peptide. In contrast, there was no significant effect on the DHK-insensitive glutamate 

uptake. There was also no effect using the control amidated peptide. These results showed 

that in neuronal cultures the changes in glutamate uptake evoked by PMA in the presence of 

the active decoy peptide were specific to GLT1 and exclude a non-specific effect on 

glutamate uptake. Saturation analysis showed a significant decrease in the capacity of 

glutamate uptake (Vmax) in neurons treated with the active GLT1b decoy peptide upon PKC 

activation (433 ± 138 vs 1230 ± 291 nmol/min/g; to 34.3 ± 3% of control; P < 0.01; n = 2; 

Fig. 9D).

A change in the capacity of glutamate uptake could be due to a change in surface expression 

of GLT1 or a change in turnover rate of the transporter. Previous studies have demonstrated 

by biotinylation of surface proteins that PKC-induced downregulation of GLT1 transport in 

C6 glioma cells is associated with internalization of GLT1 (Kalandadze et al., 2002). We 

used a similar approach to test for subcellular redistribution of GLT1a and GLT1b in 

neuronal cultures treated with PMA in the presence and absence of the active decoy peptide 

(Fig. 10). In these experiments, cultures were treated for 90 min with active decoy peptide or 

vehicle, followed by 400 nM PMA or vehicle for an additional 2 h, all in CMF-Earle’s 

containing 10 μM MK801, just as in the experiments shown in Fig. 9. We found no 

significant change in the surface expression either of GLT1a (Fig. 10A, C and E) or GLT1b 

(Fig. 10B, D and F) with PMA alone or with treatment with active decoy peptide and PMA, 

suggesting that phorbol ester downregulates GLT1 function in primary cerebral neurons in 

culture by changing rate of turnover of the transport protein.

Discussion

In this study we have found that the glutamate transporter GLT1b interacts directly and 

specifically with PICK1 in vitro as well as in vivo in yeast, in heterologous cells and in the 

brain. Adding a tyrosine or deleting the terminal four amino acids of GLT1b blocked the 

interaction with PICK1 in yeast, showing the dependence of this interaction on the C-

terminus of GLT1b. Heterologous co-expression studies showed that the localization of 

PICK1 in cells was strongly determined by the presence of GLT1b, inducing a transition 

from a uniform cytoplasmic distribution to a perinuclear and membraneassociated 

distribution as seen for other PICK1 interaction partners (Torres et al., 1998; Xia et al., 

1999; Hruska-Hageman et al., 2002). This change in distribution was not seen when a 

mutant form of GLT1b that lacked the last four amino acids was used. Widespread and 

overlapping patterns of expression are not necessarily evidence of interaction. However, the 

change in localization in the expression of PICK1 when co-expressed with GLT1b, but not 

GLT1bΔETCI or GLT1a, producing a distinct pattern of co-labeling at the plasma 

membrane, strongly suggests that interaction is taking place.

Immunoprecipitation studies further showed that a significant association of GLT1b and 

PICK1 occurs in the brain. GLT1a was also associated with PICK1 and GLT1b in native 
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complexes immunoprecipitated from the brain. This most likely occurs through association 

of GLT1b and GLT1a, because GLT1a itself did not interact with PICK1 in yeast, in COS7 

cells or in solution, and because immunoprecipitation of GLT1b pulled down GLT1a. The 

evidence of interaction between GLT1a and GLT1b shown here is consistent with the 

emerging view that the functional glutamate transporter unit is a trimer (Haugeto et al., 

1996; Gendreau et al., 2004; Yernool et al., 2004). We hypothesize that such an interaction 

to produce functional trimers is the basis for the observation that although GLT1a is 

expressed in primary neurons in culture, its activity is not affected by PMA, unless the cells 

have been treated with the active decoy peptide. That is, it appears that the interactions of 

GLT1b with PICK1 determine the behavior not only of GLT1b molecules, but also the 

GLT1a molecules that together form the functional heterotrimer. Otherwise, treatment of 

these cells with PMA without prior exposure to the myristolated decoy peptide would 

produce downregulation of glutamate transport function due to an effect on GLT1a, which 

we know is expressed in these cultures.

Analysis of the interaction of GLT1b and PICK1 by fluorescence polarization assay

In this study we have found that the C-terminus of the glutamate transporter GLT1b 

interacts directly and specifically with PICK1 by the use of an in vitro fluorescence 

polarization assay. Adding a tyrosine or deleting the terminal four amino acids of GLT1b 

blocked the interaction with PICK1 in solution, showing the dependence of this interaction 

on the C-terminus of GLT1b. The interaction of GLT1b with PICK1 was also dependent 

upon the presence of a carboxyl group at its C-terminus, providing the basis for the design of 

the control peptide used in the experiments shown in Fig. 9.

The mutational analysis in the GLT1b C-terminus suggests that the GLT1b–PICK1 

interaction is only moderately sensitive to alanine substitutions at P0–P2. For the P0 and P1 

position this was not surprising, as several ligands for PICK1 have alanines in these 

positions [PKCα (QSAV; Staudinger et al., 1997), ASIC2a (EIAC; Baron et al., 2002), 

BNaC1 (EIAC; Duggan et al., 2002), mGluR4a (NHAI; El Far et al., 2000) GluR52b 

(ETVA; Hirbec et al., 2003)], but the tolerance towards the P2 substitution with alanine was 

unexpected. The E-T-C-I motif constitutes a class I PDZ interaction sequence, and class I 

interactions are usually highly dependent on the hydrogen bonding of the hydroxyl group of 

the P2 serine or threonine with the imidazole nitrogen in histidine in the αB1 position in the 

PDZ domain (Sheng & Sala, 2001). However, the PICK1 PDZ domain is not a traditional 

class I PDZ domain, as it binds numerous class II sequences (ϕ-X-ϕ) [GluR2 (SVKI; Xia et 

al., 1999), EphB2 (SVEV), EphA7 (GIQV), ephrinB1 (YYKV; Torres et al., 1998; Madsen 

et al., 2005)], and has a lysine instead of a histidine in the αB1 position in the PDZ domain. 

Notably, the lysine was recently shown to act much like the hydrophobic residues usually 

present in domains preferentially recognizing type II sequences (Madsen et al., 2005), an 

observation that is likely to explain the tolerance towards the alanine residue in the P2 

position. In addition, our data demonstrate dependence of the GLT1b interaction on the P7–

P10 sequence. Interestingly, of the 25 bonafide PICK1 ligands (Madsen et al., 2005), 12 

have at least one aromatic residue from P7 to P9, whereas the expected frequency for an 

aromatic residue to be present in a three amino acid stretch is 26%. Furthermore, of the 11 

proteins reported to bind PICK1 lacking the preferred type II sequence, seven have at least 
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one aromatic residue from P7 to P9. This suggests that the aromatic sequence present in 

GLT1b might reflect a general upstream motif, which is particularly important for ligands 

that do not have a canonical type II sequence.

All known glutamate transporters except GLT1a terminate in a putative PDZ binding 

sequence. However, only one other PDZ protein (the Na+-H+ exchanger regulatory factor 1) 

has been shown to interact with any member of this class of transporters, in this case 

GLAST (Lee et al., 2007), although no function has been found for this interaction. 

Accordingly, we decided to explore whether the interaction of GLT1b with the PICK1 PDZ 

domain was unique for this transporter or whether additional glutamate transporters could 

form an interaction. Our data suggest that EAAT5 and the GLT1c variant form also bind 

PICK1, whereas the C-termini of EAAC1, GLAST and EAAT4, as well as EAAT2d cannot 

bind. Given the high specificity of the interactions and the fact that the observed affinities 

are comparable to those observed for other PDZ domain interactions, it is interesting to 

speculate that the interactions are critical in the regulation of GLT1 and EAAT5 (Arriza et 

al., 1997) function in vivo. There are reports of functional interactions between glutamate 

transporters and other (non- PDZ) proteins (Marie & Attwell, 1999; Jackson et al., 2001; Lin 

et al., 2001a; Marie et al., 2002).

Localization of PICK1 and GLT1b

Prior immunocytochemical studies in hippocampal cultures have shown that PICK1 is 

restricted to excitatory synapses, based on its absence from synapses that are labeled with an 

anti-glutamic acid decarboxylase antibody (Xia et al., 1999; Boudin et al., 2000), and 

targeting of recombinant PICK1 exclusively to excitatory synapses (Boudin & Craig, 2001). 

PICK1 co-localizes with the presynaptic markers synaptophysin (Dev et al., 2000) and SV2 

(Boudin et al., 2000), and biochemical studies have provided evidence for tight association 

of PICK1 with the PSD (Xia et al., 1999). Interestingly, in a recent study characterizing the 

expression of PICK1 in the brain using light microscopic immunocytochemistry, the protein 

has been found in a crescent-shaped distribution in the CA3 region of the hippocampus 

(Duggan et al., 2002), in a pattern similar to the distribution of GLT1a and GLT1b 

transcripts that we have demonstrated by in situ hybridization (Chen et al., 2004).

Function of the PICK1–GLT1b interaction

Generally, it is believed that PICK1 fulfils its biological role by regulating trafficking of its 

binding partners and in some cases by recruiting PKCα to facilitate their phosphorylation 

(Dev et al., 2000; Baron et al., 2002). Prior studies have in particular revealed an important 

role of PICK1 in the regulation of glutamate receptor trafficking (Hanley, 2006). It has been 

suggested that PICK1 is involved in endocytosis of AMPA receptors and thereby for 

maintaining an intracellular receptor pool, which is believed to be important for induction of 

long-term depression, a key process in memory and learning (Xia et al., 2000; Hanley & 

Henley, 2005). Notably, this role of PICK1 is likely dependent upon the BAR domain. In 

relation to other interaction partners, however, PICK1 might enhance their surface 

expression rather than causing a decrease (Torres et al., 2001). This suggests that PICK1 

may serve different and distinct roles depending on the nature of its binding partners.
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The original hypothesis regarding the role of PICK1 in the function of glutamate receptors 

was that PICK1 targets them to synapses, based on the ability of PICK1 to induce clustering 

in heterologous expression systems (Xia et al., 1999). Consistent with this view, deletion of 

the PICK1 binding domain of recombinant mGluR7a prevented presynaptic clustering of the 

protein in hippocampal neurons (Boudin et al., 2000). However, with respect to PICK1’s 

role in the physiology of the AMPA receptor, the view of PICK1 as a targeting protein has 

given way to the conception that PICK1 is involved critically in the retrieval of AMPA 

receptors from the plasma membrane (Xia et al., 2000; Iwakura et al., 2001; Perez et al., 

2001; Seidenman et al., 2003; Terashima et al., 2004). Therefore, two possible roles may be 

envisioned for the interaction of PICK1 with GLT1b: (1) to target and anchor GLT1b at 

synapses; (2) to provide a mechanism for regulating the trafficking of GLT1 between the 

plasma membrane and cytoplasmic membranes.

PICK1–PKCα interactions

Our initial hypothesis about the function of the PICK1–GLT1b interaction was that it could 

provide a mechanism to bring PKC physically close to GLT1b to facilitate phosphorylation 

of the transporter. Phosphorylation might result in the modulation of transporter activity 

either by directly affecting its function, or by altering the state of its deployment between the 

plasma membrane and internal membranes. Deployment of glutamate transporters to the 

plasma membrane has been shown to be subject to regulation by protein kinases (Robinson, 

2002; Gonzalez & Robinson, 2004). In the specific case of GLT1, there has been 

controversy over the effects of PKC activation (Tan et al., 1999). More recent evidence, 

however, has shown that PKC activation causes internalization of GLT1a in a GLT1a-

transfected C6 glioma cell-line, and that this change in surface expression is associated with 

a downregulation of GLT1a function. In addition, internalization of GLT1a protein with 

PKC activation has also been shown in primary mixed cultures of rat astrocytes and neurons 

(Kalandadze et al., 2002), although the cell type in which this effect occurs was not 

identified.

We observed the downregulation of glutamate transporter activity by phorbol ester only in 

rat cerebral neurons treated with the myristoylated decoy peptide. This downregulation was 

not associated with a detectable decrease in surface expression of GLT1. Thus, it appears to 

be inaccurate at this time to refer to the effect of PICK1 on GLT1 function as an effect either 

on the anchoring of GLT1 in the plasma membrane or to an effect on the trafficking of 

GLT1 between cytoplasmic membranes and the plasma membrane. This is in contrast to the 

emerging role of PICK1 in glutamate receptor trafficking, in which the interaction of PICK1 

with GluR2 promotes internalization that is dependent upon phosphorylation of S880 

(Chung et al., 2000, 2003; Xia et al., 2000; Perez et al., 2001; Seidenman et al., 2003; 

Terashima et al., 2004). In some cases, however, PICK1 has been shown to inhibit 

phosphorylation of its binding partners (Dev et al., 2000; Lin et al., 2001c), and so it is 

conceivable that PICK1 interacting with GLT1b blocks the phosphorylation either of GLT1b 

or an associated protein, and that it is this block of phosphorylation that prevents the 

downregulation of the transporter. The dichotomous nature of the effects of PICK1 on 

glutamate receptors and transporters may provide an efficient mechanism for decreasing 

glutamate receptor expression while preserving glutamate transporter expression at synapses 
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undergoing activity-dependent changes in synaptic strength. Another glutamate transporter, 

EAAT5, has a C-terminus that binds to PICK1, and it remains to be determined whether 

interaction with PICK1 has the same functional significance for this glutamate transporter as 

we have found for GLT1b.

Our results do not necessarily contradict prior results showing PKC-induced internalization 

of GLT1, because our results were obtained in a primary neuronal culture system in which 

GLT1 is the primary functional transporter (Wang et al., 1998b; Chen et al., 2002). In 

primary cultures containing astrocytes, GLT1 contributes little to total uptake activity 

(Swanson et al., 1997; Schlag et al., 1998), for reasons that are unclear. A precedent for 

internalization-independent regulation of neurotransmitter transporter function has been 

demonstrated for the γ-aminobutyric acid (GABA) transporter (GAT) and the serotonin 

transporter. Regulation of GAT transporter capacity by interaction with syntaxin 1A was 

shown to be due to changes in turnover rate rather than in surface GAT expression (Deken et 

al., 2000; Quick, 2003; Hansra et al., 2004). Previous efforts to identify the site or sites on 

GLT1a that are phosphorylated as a consequence of PKC activation, and that play a 

determinative role in the regulation of GLT1 expression, have not produced a clear result 

(Kalandadze et al., 2002). Therefore, it is not known whether the action of PKC that causes 

downregulation of GLT1 activity is a direct action on GLT1 or on an associated protein.

The active decoy peptide used in these experiments was designed to disrupt the interaction 

of GLT1b with PICK1. However, it may disrupt the interaction of other proteins that interact 

with PICK1, for example GluR2. In addition, as the decoy peptide terminates in a PDZ 

domain interaction sequence, it is possible that it may disrupt other PDZ domain interactions 

as well, although no other PDZ domain-containing protein has been discovered with the 

specific C-terminal sequence E-T-C-I. At this point, we can only say that the data obtained 

using the active decoy peptide in neuronal cultures suggest that the PICK1–GLT1b 

interaction suppresses the downregulation of GLT1 in neuronal cultures produced by PKCα 

activation, and that it is disruption of this interaction by the decoy peptide that unmasks the 

vulnerability to PKCα-induced downregulation.

What is the likely functional significance for the interaction of GLT1b, GLT1c and EAAT5 

with PICK1 in the brain? Because PICK1 is predominantly expressed in neurons rather than 

in astrocytes, it is most likely that it is in neurons that the interactions of these transporters 

with PICK1 will be of functional importance. In situ hybridization studies have shown that: 

(1) GLT1a mRNA is clearly the predominant GLT1 mRNA in the adult brain; (2) GLT1a 

and GLT1b isoforms are found in astrocytes throughout the brain; (3) GLT1a and GLT1b 

are both expressed in neurons in some regions of the brain and that, in general, GLT1a is the 

predominant form in neurons (Chen et al., 2004); (4) GLT1b mRNA is the predominant 

isoform only in some regions, most notably in the retina (Berger et al., 2005). GLT1b 

protein expression in the retina was found to vary in a species-specific manner; in rats and 

humans GLT1b was found in photoreceptor terminals and in bipolar cells (Reye et al., 

2002). A partial sequence (579 bp) of GLT1c was discovered by reverse transcriptase-PCR 

using rat retina RNA (accession number AY578981; Rauen et al., 2004). Light microscopic 

immunocytochemical studies revealed low-level expression in the brain, but strong 

expression in ‘synaptic-terminal-like structures in the outer plexiform layer of the retina, 
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corresponding to the synaptic terminals of rod photoreceptors’. Interestingly, the expression 

of GLT1c was indistinguishable from that of EAAT5. Because the three transporters that 

interact with PICK1 are localized in the retina, and in some instances in the same neuronal 

structures in the retina such as photoreceptor terminals and bipolar cells, it is possible that 

PICK1– glutamate transporter interactions are involved in the modulation of retinal circuits. 

This does not preclude the possibility that the PICK1–GLT1b interaction is important in 

cerebral neurons expressing GLT1b under normal conditions, or under pathological 

conditions, in which GLTb might be upregulated (Maragakis et al., 2004; Rauen et al., 

2004).
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AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
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CH Children’s Hospital

CMF-Earle’s calcium/magnesium-free Earle’s balanced salt solution

DAT dopamine transporter

DMEM Dulbecco’s modified Eagle’s medium

DMSO dimethylsulfoxide

DTT dithiothreitol

EAAT excitatory amino acid transporter

GABA γ-aminobutyric acid

GAT GABA transporter

GLT1 glutamate transporter 1

HBSS Hank’s balanced saline solution

HPLC high-pressure liquid chromatography

PBS phosphate-buffered saline

PCR polymerase chain reaction

PDZ PSD95, discs large, ZO-1

PICK1 protein interacting with C kinase 1

PKC protein kinase C

PMA phorbol 12-myristate 13-acetate

SDS–PAGE sodium dodecyl sulfate–polyacrylamide gel electrophoresis

TBS Tris-buffered saline

TBS-T TBS buffer + 0.1% Triton X-100

X-gal X-galactocerebroside
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Fig. 1. 
PICK1 interacts with GLT1b in yeast. (A) PDZ domain interaction motifs in glutamate 

transporter C-terminal sequences are shown. All known glutamate transporters, except 

GLT1a, have PDZ domain interaction motifs in their C-termini, if any hydrophobic residue 

is allowed in the P0 position. (B) PICK1 interacted with GLT1b in a yeast two hybrid 

screen. The C-terminal cytoplasmic domain of the originally cloned GLT1 (GLT1a) and 

various mutations of the GLT1b C-terminus were inserted into the pDBLeu vector and co-

transformed with pPC86–PICK1. Growth and β-galactosidase expression were assessed 

visually. Deletion of the last four amino acids or addition of an extra tyrosine residue 

completely abolished the GLT1b interaction with PICK1. GLT1a did not interact with 

PICK1.
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Fig. 2. 
The 13 amino acid C-terminus of GLT1b (GLT1b13) interacted with PICK1 with high 

affinity and specificity in solution. In vitro fluorescence polarization assay was used to 

analyse the interaction of peptides with PICK1. The GLT1b–PICK1 interaction was 

inhibited by addition of a C-terminal tyrosine (GLT1b13 + Y) or deletion of the C-terminal 

four amino acids (GLT1b13ΔETCI). Reduction of peptide length to 10 amino acids 

(GLT1b10) did not significantly affect the interaction compared with the 13 amino acid 

peptide (GLT1b13). Replacing the C-terminal carboxyl group with an amide group 

(GLT1b10-amide) blocked the interaction, producing a result similar to that obtained with 

vehicle (DMSO) alone (see Fig. 5B)
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Fig. 3. 
The effect of alanine mutagenesis on the interaction of GLT1b peptide with PICK1. Alanine 

substitution at the P0 position (GLT1b13ETCA) had little effect on the affinity of the 

GLT1b peptide with PICK1. Alanine substitution at the P1 and P2 (GLT1b13ETAI and 

GLT1b13EACI) positions produced similar moderate inhibition of the interaction.
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Fig. 4. 
Effect of N-terminal truncations on the affinity of GLT1b-based peptides for PICK1. 

Interaction was greatly decreased with the truncated peptides GLT1b7 (last seven amino 

acids) and GLT1b4 (last four amino acids).
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Fig. 5. 
Assay of C-terminal peptide interactions of other glutamate transporters (all 11-mers) with 

PICK1. (A) Only EAAT5, in addition to GLT1b, demonstrated high affinity interaction with 

PICK1. (B) A peptide based on the variant form GLT1c bound with high affinity to PICK1, 

comparable to that of protein kinase C (PKC)α. A peptide based on another variant form 

found in an EST database, ‘EAAT2d’, did not interact with PICK1. DMSO, 

dimethylsulfoxide.
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Fig. 6. 
PICK1 interacts specifically with GLT1b in vivo and in vitro. (A) Characterization of an 

anti-PICK1 antibody. A polyclonal antibody directed against the C-terminus 16 amino acid 

peptide of PICK1 (RGATGPTDKGGSWCDS) was raised in chickens. The affinity-purified 

antibody recognized a single band at 55 kDa on immunoblot of rat neuronal and rat brain 

protein. Co-incubation with the antigenic peptide blocked the immunoreactivity. (B) Co-

immunoprecipitation of GLT1b and PICK1 from COS7 cells. The coding sequence of 

GLT1b was subcloned into the mammalian expression vector pcDNA3 (Invitrogen) and the 

PICK1 coding region was fused at the C-terminus of EGFP in EGFP-C1 vector (Clontech). 

COS7 cells were co-transfected with these two plasmids. Immunoprecipitation with C-

terminal PICK1 antibody, but not chicken IgG (‘Control’), pulled down EGFP–PICK1 

fusion protein. A chicken IgG band at about 75 kDa was also detected by the secondary 

antibody. GLT1b co-immunoprecipitated with PICK1. A 50-kDa band representing the 

rabbit anti-chicken IgG that was used as an intermediate antibody to pull down chicken IgG 

and the anti-PICK1 antibody was also recognized by the secondary antibody. (C) Co-

immunoprecipitation of GLT1b, GLT1a and PICK1 from rat brain. Rat forebrain lysate was 

immunoprecipitated with anti-PICK1, anti-nGLT1 or anti-cGLT1b antibody. PICK1 protein 
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was precipitated with anti-PICK1 antibody and with anti-nGLT1 antibody in much smaller 

amount. GLT1b was precipitated with anti-nGLT1 antibody as well as anti-PICK1 antibody. 

GLT1a protein also immunoprecipitated with both anti-cGLT1b and anti-PICK1 antibodies 

in multimers. The 75-kDa chicken IgG band and the 50-kDa rabbit IgG band that were in the 

immunocomplex were detectable on the immunoblot.
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Fig. 7. 
Immunocytochemical localization of GLT1 and PICK1 expressed in COS7 cells. (A) 

GLT1b, but not GLT1bΔETCI (GLT1bΔ4), induced redistribution of PICK1 in COS7 cells. 

GLT1b and GLT1bΔ4 are present mainly on the plasma membrane, but also in the 

cytoplasm. Note no co-localization of GLT1b and GLT1bΔ4 with EGFP on the plasma 

membrane. In contrast, co-expression of GLT1b with PICK1 induced redistribution of the 

PICK1 fusion protein to the plasma membrane (yellow labeling). Co-localization of EGFP–

PICK1 and GLT1b, visualized as yellow labeling, was apparent both at the plasma 

membrane and in a perinuclear distribution. The deletion of the last four amino acids of 

GLT1b abolished the co-localization. (B) Distribution of GLT1a co-transfected with EGFP 

or EGFP– PICK1 in COS7 cells. GLT1a immunoreactivity was detected on the plasma 

membrane and also intracellularly. The EGFP–PICK1 distribution was not altered when co-

expressed with GLT1a (note absence of yellow labeling). EGFP alone was distributed 

diffusely in the cytoplasm and nucleus. The EGFP–PICK1 fusion protein was primarily 

intracellular; in about 15% of the cells membrane staining was detected. A similar degree of 

labeling of the cell membrane by the EGFP–PICK1 fusion protein was detected when co-

expressed with GLT1bΔ4. In contrast, when GLT1b was co-expressed with EGFP–PICK1, 

92% of the cells showed EGFP–PICK1 at the cell surface, manifest as yellow labeling. The 

nucleus, detected by bisbenzamide, is shown in blue in the merged pictures only. Small 

squares depict areas enlarged in the lower right corner. Scale bar: 20 μm.
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Fig. 8. 
Immunocytochemical localization of PICK1, GLT1b and synaptic markers in hippocampal 

neurons. (A–F) Hippocampal cultures at 14 days in vitro were labeled with an anti-cGLT1b 

(green) antibody raised in rabbit and an anti-PICK1 (red) antibody raised in chicken and 

then exposed to the appropriate secondary antibodies. (A–C) PICK1 and GLT1b are both 

present in the cell body as well as in a punctate distribution over neuronal processes. 

Overlying the two images (C) shows partial overlap of the localization of the two proteins. 

(D–F) At higher magnification, the localization of immunoreactivity of both PICK1 and 

GLT1b in discrete roughly spherical units suggestive of synapses is apparent. Overlying the 

two images shows partial overlap (F). (G–I) Hippocampal cultures were labeled with a 

mouse monoclonal anti-synaptophysin antibody (G), and anti-cGLT1b (H). Overlying the 

two images indicates partial overlap (I), indicating close association of GLT1b with the 

presynaptic marker. (J–L) Hippocampal cultures were labeled with an anti-NR1 antibody (J) 
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as well as anti-cGLT1b (K). Overlying the two images indicates partial overlap (L), 

indicating close association of GLT1b with the postsynaptic marker. Scale bars: 20 μm.
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Fig. 9. 
Functional interactions of PICK1 and GLT1b in hippocampal neurons. (A) Phorbol 12-

myristate 13-acetate (PMA; 400 nM; 2 h) induced downregulation of glutamate uptake in 

neuronal cultures treated with C-terminal carboxyl myristoylated peptide (3 μM; total time 

3.5 h) but not C-terminal amide myristolated peptide. In the presence of the active GLT1b 

decoy peptide, PMA caused a reduction in glutamate uptake to 63.8 ± 19.6% of the control 

value (GLT1b decoy treated without PMA; P < 0.01). The pooled results of 12 experiments 

that were performed are shown. Actual uptake data in PMA–control: 32 924 ± 2506 cpm. 

(B) The effects of PMA plus the C-terminal carboxyl myristolated peptide on DHK-

sensitive and DHK-insensitive transport were compared. PMA decreased glutamate 

transport only in cultures pretreated with the C-terminal carboxyl myristolated peptide, but 

not in the presence of DHK. The pooled results of five experiments that were performed are 

shown. Actual uptake data in PMA–control: 32 816 ± 6423 cpm. (C) PMA plus C-terminal 

carboxyl myristolated peptide decreased the DHK-sensitive component of transport. These 

results are from the same experiments displayed in B. There was a 49.2 ± 7.1% decrease in 

the DHK-sensitive component. The DHK-insensitive component did not show an effect that 

was specific to the active GLT1b decoy peptide. (D) Saturation analysis of glutamate uptake 

in neuronal cultures was performed after treatment with C-carboxyl myristoylated peptide 

(‘Pep’; 3 μM) treatment (1.5 h) followed by PMA (400 nM with or without peptide, for 2 h). 

PMA induced a 64.8 ± 4.2% decrease in Vmax, without effect on Km. Results from one 

experiment of two that were performed are shown. **P < 0.01.

Bassan et al. Page 36

Eur J Neurosci. Author manuscript; available in PMC 2015 February 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 10. 
PKC activation is not associated with a change in surface expression of GLT1 in cultured 

forebrain neurons. (A) A representative Western blot showing no effect of phorbol 12-

myristate 13-actetate (PMA) with or without myristoylated peptide on cell surface 

expression of GLT1a. Actin was visualized on the same immunoblot as an internal standard 

for comparison for protein loading in the ‘total’ lysates, and to reveal labeling of 

cytoplasmic proteins in the ‘surface’ lysates. (B) A representative Western blot showing no 

effect of 400 nM PMA with or without active decoy peptide on cell surface expression of 

GLT1b. (C) Densitometry of the GLT1a bands of pooled data from nine experiments that 

were performed. Bands selected for analysis were monomers (approximately 70 kDa) and 

multimers (approximately 140 kDa and 210 kDa). The results for each group were similar 
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and pooled data are shown here. No significant differences were observed. (D) Densitometry 

of the GLT1b bands pooled data from nine experiments. Bands that were selected for 

analysis were monomers (approximately 70 kDa) and multimers approximately (210 kDa). 

No significant differences were observed. (E) Ratio of surface to total immunoreactivity for 

GLT1a. The ratio was about 31 ± 2% for the control. There were no significant differences 

among different treatments. (F) Ratio of surface to total immunoreactivity for GLT1b. The 

ratio was 24 ± 2% for the control. There were no significant differences among different 

treatments.
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Table 1

The affinities of C-terminal glutamate transporter peptides for PICK1

Peptide Ki (μM) (n)

GLT1bETCI 6.5 ± 0.4 (6)

GLT1bEACI 31 ± 2 (3)

GLT1bETAI 45 ± 2 (3)

GLT1bETCA 12.7 ± 0.8 (3)

GLT1bETCI + Y 360 ± 50 (3)

GLT1bΔETCI 74 ± 6 (3)

GLT1b10CHO 190 ± 50 (3)

GLT1b11 2.3 ± 0.3 (3)

GLT1b10 4.1 ± 1 (3)

GLT1b9 13 ± 3 (3)

GLT1b8 13 ± 4 (3)

GLT1b7 70 ± 7 (3)

GLT1b4 85 ± 8 (3)

EAAC1* – –

GLT 1a* – –

GLT1c 27 ± 2 (3)

EAAT2d 259 ± 2 (3)

GLAST 350 ± 80 (3)

EAAT4 250 ± 50 (3)

EAAT5 5.5 ± 0.1 (3)

PKCα 33 ± 2 (3)

DAT 2.3 ± 0.1 (3)

GluR2 9 ± 1 (3)

The affinities were determined using a fluorescent polarization assay as described in Materials and methods. Data are means ± SEM of the 
indicated number (n) of independent experiments.

*
No interaction.
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