3,793 research outputs found

    A TCP/IP Network Emulator

    No full text
    In this paper a Linux based framework of a TCP/IP emulator is introduced. Several advantages can be noted. Firstly, the maintenance of large numbers of processors is unnecessary. Secondly, compared with simulators constructed with conceptual codes, our emulator framework makes it possible to test the interaction and behaviour of TCP/IP in real Linux network environments. Thirdly, the wired network is fully controlled by a single processor enabling us to separate TCP/IP behaviour over the wireless network, which helps distinguish performance functions that occur due to noisy wireless links. The framework was tested on two Linux processors over an IEEE802.11b wireless link. The simulations show that the complex topology of the heterogeneous network was "realistically" constructed

    A High Accurate and Component Based Network Emulator for the Simulation of Complex Heterogeneous Network Topology

    No full text
    Wired features like quick handover, radio jamming and dynamic data rates cannot be truthfully presented inside the simulator bue we concentrate on all layers above the physical layer. Previous network emulators were designed for wired networks or router related emulations. Complex network topologies can be constructed and integrated

    Wireless Network Virtualization: Opportunities for Sharing in the 3.5 GHz Band

    Get PDF
    In this paper, we evaluate the opportunities that Wireless Network Virtualization (WNV) can bring for spectrum sharing by focusing on the regulatory framework that has been deployed by the Federal Communications Commission (FCC) for the 3.5GHz band. Pairing this regulatory approach with WNV permits us to present a sharing proposal where emphasis is made on increasing resource availability and providing flexible methods for negotiating for resource access. We include an economics framework that aims at presenting an additional perspective on the attainable outcomes of our sharing proposal. We find that by pairing regulatory flexibility with an enabling technology, within an appropriate economics context, we can increase resource access opportunities and enhance current sharing arrangements

    On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters

    Get PDF
    Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system

    Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients

    Get PDF
    <br>Background:Prostate cancer cell growth is dependent upon androgen receptor (AR) activation, which is regulated by specific kinases. The aim of the current study is to establish if AR phosphorylation by Cdk1 or ERK1/2 is of prognostic significance.</br> <br>Methods: Scansite 2.0 was utilised to predict which AR sites are phosphorylated by Cdk1 and ERK1/2. Immunohistochemistry for these sites was then performed on 90 hormone-naive prostate cancer specimens. The interaction between Cdk1/ERK1/2 and AR phosphorylation was investigated in vitro using LNCaP cells.</br><br>Results:Phosphorylation of AR at serine 515 (pAR(S515)) and PSA at diagnosis were independently associated with decreased time to biochemical relapse. Cdk1 and pCdk1(161), but not ERK1/2, correlated with pAR(S515). High expression of pAR(S515) in patients with a PSA at diagnosis of ≤20 ng ml(-1) was associated with shorter time to biochemical relapse (P=0.019). This translated into a reduction in disease-specific survival (10-year survival, 38.1% vs 100%, P<0.001). In vitro studies demonstrated that treatment with Roscovitine (a Cdk inhibitor) caused a reduction in pCdk1(161) expression, pAR(S515)expression and cellular proliferation.</br> <br>Conclusion: In prostate cancer patients with PSA at diagnosis of ≤20 ng ml(-1), phosphorylation of AR at serine 515 by Cdk1 may be an independent prognostic marker.</br&gt

    Structural and magnetic phase diagram of CeFeAsO1-xFx and its relationship to high-temperature superconductivity

    Full text link
    We use neutron scattering to study the structural and magnetic phase transitions in the iron pnictides CeFeAsO1-xFx as the system is tuned from a semimetal to a high-transition-temperature (high-Tc) superconductor through Fluorine (F) doping x. In the undoped state, CeFeAsO develops a structural lattice distortion followed by a stripe like commensurate antiferromagnetic order with decreasing temperature. With increasing Fluorine doping, the structural phase transition decreases gradually while the antiferromagnetic order is suppressed before the appearance of superconductivity, resulting an electronic phase diagram remarkably similar to that of the high-Tc copper oxides. Comparison of the structural evolution of CeFeAsO1-xFx with other Fe-based superconductors reveals that the effective electronic band width decreases systematically for materials with higher Tc. The results suggest that electron correlation effects are important for the mechanism of high-Tc superconductivity in these Fe pnictides.Comment: 19 pages, 5 figure

    Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis

    Get PDF
    Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD50 sensitivity to 30 µM 4-HNE and 100 µM H2O2 at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H2O2 resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We conclude that ROS-induced, cardiac-oxidized antigens are targets of immune recognition by antibodies and molecular determinants for pathogenesis during Chagas disease

    Lack of association between mutations of gene-encoding mitochondrial D310 (displacement loop) mononucleotide repeat and oxidative stress in chronic dialysis patients in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria (mt) are highly susceptible to reactive oxygen species (ROS). In this study, we investigated the association between a region within the displacement loop (D-loop) in mtDNA that is highly susceptible to ROS and oxidative stress markers in chronic dialysis patients. We enrolled 184 chronic dialysis patients and 213 age-matched healthy subjects for comparison. Blood levels of oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS) and free thiol, and the mtDNA copy number were determined. A mononucleotide repeat sequence (CCCC...CCCTCCCCCC) between nucleotides 303 and 316-318 (D310) was identified in mtDNA.</p> <p>Results</p> <p>Depending on alterations in the D310 mononucleotide repeat, subjects were categorized into 4 subgroups: 7-C, 8-C, 9 or 10-C, and T-to-C transition. Oxidative stress was higher in chronic dialysis patients, evidenced by higher levels of TBARS and mtDNA copy number, and a lower level of free thiol. The distribution of 7-C, 8-C, and 9-10C in dialysis and control subjects was as follows: 7-C (38% <it>vs. </it>31.5%), 8-C (35.3% <it>vs. </it>43.2%), and 9-10C (24.5% <it>vs. </it>22.1%). Although there were significant differences in levels of TBARS, free thiol, and the mtDNA copy number in the D310 repeat subgroups (except T-to-C transition) between dialysis patients and control subjects, post hoc analyses within the same study cohort revealed no significant differences.</p> <p>Conclusion</p> <p>Although oxidative stress was elevated in chronic dialysis patients and resulted in a compensatory increase in the mtDNA copy number, homopolymeric C repeats in the mtDNA region (D310), susceptible to ROS, were not associated with oxidative stress markers in these patients.</p

    The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers

    Get PDF
    Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics
    corecore