3,842 research outputs found

    Volterra Series identification Based on State Transition Algorithm with Orthogonal Transformation

    Get PDF
    A Volterra kernel identification method based on state transition algorithm with orthogonal transformation (called OTSTA) was proposed to solve the hard problem in identifying Volterra kernels of nonlinear systems. Firstly, the population with chaotic sequences was initialized by using chaotic strategy. Then the orthogonal transformation was used to finish the mutation operator of the selected individual. OTSTA was used on the identification of Volterra series, and compared with particle swarm optimization (called PSO) and state transition algorithm (STA). The simulation results showed that OTSTA has better identification precision and convergence than PSO and STA under non-noise interference. And when there is noise, the identification precision, convergence and anti-interference of OTSTA are also superior to PSO and STA

    1,1′-Dimethyl-1,1′-(butane-1,4-di­yl)dipyrrolidinium dibromide methanol disolvate

    Get PDF
    In the title compound, C14H30N2 2+·2Br−·2CH3OH, two terminal C atoms of the butane chain are connected to two N atoms of the 1-methyl­pyrollidines, forming a linear diquaternary ammonium cation. The cation lies across a centre of inversion located between the two central C atoms of the butane chain. The asymmetric unit therefore comprises one half-cation, a bromide anion and a methanol solvent mol­ecule. In the crystal structure, the bromide anions are linked to the methanol solvent mol­ecules by O—H⋯Br hydrogen bonds

    A redetermination of bis­(5,5′-diethyl­barbiturato)bis­(imidazole)cobalt(II)

    Get PDF
    The title complex, [Co(C8H12N2O3)2(C3H4N2)2], whose structure was first determined by Wang & Craven [(1971). J. Chem. Soc. D, pp. 290–291], has been redetermined with improved precision. A crystallographic twofold rotation axis passes through the Co atom, which is tetrahedrally coordinated by two N atoms from two barbital ligands and two N atoms from two imidazole ligands. The mol­ecules are self-assembled via inter­molecular N—H⋯O hydrogen-bonding inter­actions into a supra­molecular network

    Discovery of six high-redshift quasars with the Lijiang 2.4m telescope and the Multiple Mirror Telescope

    Full text link
    Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with ii-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from the YFOSC spectroscopy of the Lijiang 2.4m telescope in February, 2012. These quasars are in the list of z>3.6z>3.6 quasar candidates selected by using our proposed JK/iYJ-K/i-Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z>3.6z>3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z>4z>4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.Comment: 7 pages, 2 figures, published in Research in Astronomy and Astrophysics (RAA) as a lette

    Aqua­bis(1H-imidazole-κN 3)bis­(4-methyl­benzoato)-κO;κO,O′-nickel(II)

    Get PDF
    In the mononuclear title compound, [Ni(C8H7O2)2(C3H4N2)2(H2O)], the NiII atom is coordinated by three carboxylate O atoms (from a bidentate 4-methyl­benzoate ligand and a monodentate 4-methyl­benzoate ligand), two N atoms (from two imidazole ligands) and a water mol­ecule in an octa­hedral geometry. Inter­molecular O—H⋯O hydrogen-bonding inter­actions lead to infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular N—H⋯O hydrogen-bonding inter­actions and π–π stacking [centroid–centroid distance = 3.717 (2) Å]

    Animal Models of Burn Wound Management

    Get PDF
    Burn injury is known as the most traumatic wound. In the clinical, most patients with burn injury suffer from extreme pain during wound management; hence, the effective treatment that involved advanced medication is needed. In the evaluation of burn wound care devices, the use of animal model is considered suitable as valuable tools to investigate the burn pathophysiology as well as the efficacy of treatment strategies due to the complexity and heterogeneous nature of the burn. This chapter aimed to review the preclinical small and large animal models of burn injury for translational applications and to highlight their benefits and limitations for the burn treatment design that are clinically applicable to humans
    corecore